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Abstract—In domain adaptation, where the feature distribu-
tions of the source and target domains are different, various
distance-based methods have been proposed to handle the domain
shift by minimizing the discrepancy between the source and
target domains. These methods use hand-crafted bottleneck
networks, which might hinder the alignment of hidden feature
representations extracted from both domains. In this paper, we
propose a new method called Alignment Architecture Search
with Population Correlation (AASPC) to automatically learn the
architecture of the bottleneck network that can align the source
and target domains. The proposed AASPC method introduces
a new similarity function called Population Correlation (PC) to
measure the domain discrepancy. The proposed AASPC method
leverages PC to learn the alignment architecture and domain-
invariant feature representation. Experiments on several bench-
mark datasets, including Office-31, Office-Home, and VisDA-
2017, show the effectiveness of the proposed AASPC method.

Index Terms—domain adaptation, neural architecture search,
transfer learning

I. INTRODUCTION

With access to large-scale labeled data, deep neural net-
works have achieved state-of-the-art performance among a
variety of machine learning problems and applications [1]–
[3]. However, with intolerably time-consuming and labor-
expensive costs, it is hard for a target domain of interest to
collect enough labeled data for model training. One solution is
to transfer a deep neural network trained on a data-sufficient
source domain to the target domain where only unlabeled
data is available. However, this learning paradigm suffers from
the shift in data distributions across different domains, which
brings a major obstacle in adapting predictive models for the
target task.

Domain Adaptation (DA) [4], [5] aims to learn a high-
performance learner on a target domain via utilizing the
knowledge transferred from a source domain, which has a
different but related data distribution to the target domain.
Many DA methods aim to bridge the gap between source and
target domains to apply the classifier learned in the source
domain to the target domain. To achieve this goal, recent DA
works can be grouped into two main categories: distance-
based methods [6]–[15] and adversarial-based DA methods
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[16]–[20]. For distance functions adopted by DA, the first
attempt is the Proxy A-distance [7], which aims to minimize
the generalization error by discriminating between source and
target samples. Maximum Mean Discrepancy is a popular
distance measure between two domains and it has been used
in Deep Domain Confusion [9] and Deep Adaptation Network
[10].

Although numerous distance-based DA methods have been
proposed, learning the domain-invariant feature representation
is still challenging. Distance alone in a high-dimensional space
may be difficult to reflect the domain discrepancy adequately
[21], [22]. The alignment of hidden feature representations
also relies heavily on the network architecture design. How-
ever, the network architecture of existing methods is manually
designed by experts, hence it is hard to guarantee that hidden
feature representations from different domains can be well
aligned since the difficulty levels of different DA tasks vary.
For instance, a complex task may require a more sophisticated
network architecture than an easy task, making a hand-crafted
network architecture fail to do the alignment for tasks with
varying difficulty levels, limiting DA methods’ capacity and
versatility.

To alleviate those limitations, in this paper, we propose a
new similarity function called Population Correlation (PC) to
measure the similarity between the source and target domains.
A learning model can learn a domain-invariant feature rep-
resentation by maximizing the PC between the source and
target domains. Specifically, maximizing PC can force the two
domains to have similar distributions since the PC is the maxi-
mum pairwise correlations between source and target samples.
To further align hidden feature representations between source
and target domains, we design a reinforcement-based Neural
Architecture Search (NAS) method called Alignment Archi-
tecture Search with Population Correlation (AASPC) to learn
deep alignment architecture. In this way, AASPC can better
learn domain-invariant feature representations for different DA
tasks. To the best of our knowledge, the proposed AASPC
method is the first NAS framework designed for distance-
based DA methods. AASPC is also one of few works integrat-
ing NAS methods into deep DA methods. Our contributions
are summarized as follows:

• We propose a new similarity measure, i.e., PC, to measure



the domain similarity. By maximizing the PC between the
source and target domains, our method can learn domain-
invariant feature representation.

• We design the AASPC framework to search an optimal
network architecture to align hidden features between the
source and target domains.

• Experimental results on three benchmark datasets demon-
strate the effectiveness of the proposed methods.

II. RELATED WORK

a) Domain Adaptation: DA aims to transfer the knowl-
edge learned from a source domain with labeled data to a target
domain without labeled data, where there is a domain shift be-
tween domains. As discussed in the introduction, recent works
in DA can be mainly grouped into two categories: distance-
based methods and adversarial DA methods. In this paper, we
mainly focus on distance-based methods, which minimize the
discrepancy between the source and target domains via some
measures, including the maximum mean discrepancy used in
Deep Domain Confusion [9], Deep Adaptation Network [10]
and Joint Adaptation Networks (JAN) [23], the second-order
statistics utilized in CORrelation ALignment (CORAL) [12],
[13], and the Central Moment Discrepancy (CMD) [14].

b) Neural Architecture Search: NAS aims to design
the architecture of a neural network in an automated way.
Compared with the manually designed architecture of neural
networks, NAS has demonstrated the capability to find ar-
chitecture with state-of-the-art performance in various tasks
[24]–[26]. For example, the NAS-FPN method [26] leverages
NAS to learn an effective architecture of the feature pyramid
network for object detection.

Although NAS can achieve satisfactory performance, the
high computational cost of the searching procedure makes
NAS less attractive. To accelerate the search procedure, one-
shot NAS method leverages a supernet, which contains all the
candidate architecture in the search space. In the supernet,
weights of operations on edges are shared across different
candidate architecture. ENAS [24] employs a reinforcement-
based method to train a controller that samples architecture
from a supernet with a weight sharing mechanism. DARTS
[25] search architecture with a differentiable objective function
based on a supernet that uses the softmax function to contain
all candidate operations on each edge. The final architecture
is determined based on the weights corresponding to the
candidate operations on each edge.

c) Learning Architecture for Domain Adaptation: There
are few works on NAS for DA. To improve the gener-
alization ability of neural networks for DA, [27] analyze
the generalization bound of neural architecture and propose
the AdaptNAS method to adapt neural architecture between
domains. [28] propose a DARTS-like method for DA, which
combines DARTS and DA into one framework. [29] aim to
learn an auxiliary branch network from data for an adversarial
DA method. Different from those works, this paper aims to
leverage NAS to learn alignment architecture and domain-
invariant feature representation based on PC.

III. METHODOLOGY

In this section, we introduce the proposed PC similarity and
the AASPC method.

A. Population Correlation

We first present the definition of PC. Here we study DA
under the unsupervised setting. That is, the target domain
has unlabeled data only. In DA, the source domain Ds =
{(xs

i ,y
s
i )}ns

i=1 has ns labeled samples and the target domain
Dt =

{
xt
j

}nt

j=1
has nt unlabeled samples. To adapt the clas-

sifier trained on the source domain to the target domain, one
solution is to minimize the domain discrepancy or equivalently
maximize the domain similarity. To achieve this, we propose
the PC to measure the similarity between the source and target
domains. Specifically, suppose F (·) is the feature extraction
network. Then the PC between the source and target domains
can be computed based on each pair of source and target
samples as
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where ∥ · ∥2 denotes the ℓ2 norm of a vector, corr(x1,x2) =
xT
1 x2

∥x1∥2∥x2∥2
denotes the correlation between two vectors, and

[n] denotes a set of integers {1, . . . , n} for an integer n.
Here we use the cosine similarity to calculate the correlation
between two vectors, thus the larger the PC value is, the more
similar the two domains are.

For DA tasks, the hidden feature representations learned
by the feature extraction network should be not only discrim-
inative to train a strong classifier but also domain-invariant
to both the source and target domains. Only maximizing the
PC can help learn a domain-invariant feature representation
and only minimizing the classification loss is to learn a
discriminative feature representation. Therefore, we combine
the classification loss and the PC to obtain the final objective
function, which is formulated as

LPC =
1

ns

ns∑
i=1

l(C(F (xs
i )), y

s
i )− λPC(Ds,Dt), (2)

where λ is a trade-off parameter, C(·) denotes the classifica-
tion layer, and l(·, ·) denotes the classification loss such as the
cross-entropy loss.

By minimizing Eq. (2), the final learned feature represen-
tations are not only discriminative for classification but also
domain-invariant for the adaptation.

B. AASPC

In this section, we introduce the proposed AASPC frame-
work that finds an optimal alignment architecture for source
and target domains. An overview of the AASPC framework is
shown in Figure 1.
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Fig. 1. Overview of the AASPC framework. Source and target data first go through the feature extractor to extract hidden features. The controller samples
cell choices for each cell and connections between the cells from search space to generate the architecture of the sampled network. Source and target data
with the extracted feature representation then go through the sampled network. Finally, the cross-entropy loss is minimized and the PC is maximized. The
controller’s policy is updated by the reward of the negative overall loss.
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Fig. 2. The search space of the DAMPC-NAS method. Dashed lines represent
possible search choices and numbered grey circles indicate the order of
choices generated from the controller.

Algorithm 1: AASPC
Input : source data Ds, target data Dt, the number of

training epochs nepochs

Output: The searched architecture with learned
weights

1 initialize controller;
2 for i← 0 to nepochs do
3 sample Am from Aspace with policy π(m; θ);
4 for mini-batch in Ds and Dt do
5 compute LPC in Eq. (2) with Am;
6 update ωm in Aspace with LPC;
7 end
8 calculate reward of Am as Rm = −LPC;
9 update θ in π(m; θ) with reward Rm;

10 end
Return: Am with trained weights ωm

1) Cell-based Search Space: We design the search space
on the top of the Resnet-50 backbone, whose architecture is
kept fixed, and hence we only search the architecture after the
backbone. The search space of the AASPC method consists of
two parts: within cells and between cells. We design the cell
as the composition of the fully connected layer, batch-norm
layer, dropout layer, and the associated activation functions.
Within the cell, we search for the size of the fully connected
layer and the location of the skip connection. Specifically, the
search choice of the fully connected layer in a cell can be ‘the
same as input size’ or ‘the half of input size’. The starting
location of the skip connection can be chosen from the cell
input, the fully connected layer, and the batch-norm layer. We
search for input and output connections between the cells of
the N cells. For example, if there are three cells in the search
space, i.e., N = 3, the input of “Cell 1” can be chosen from
the outputs of “Backbone” and “Cell 0”, and the input of “Cell
2” can be chosen from the outputs of “Cell 0” and “Cell 1”,
hence the input of a cell can be chosen from the outputs of
the previous two cells. The calculation of PC can be chosen
from one of all cells’ outputs. Moreover, One of the outputs
from the N cells, i.e., “Cell 0”, “Cell 1” and “Cell 2”, can
connect to the classifier trained on source domain data. Hence,
the total search space has (2×3)N2N−1N2 configurations. An
illustration of the search space in the AASPC method is shown
in Figure 2. In experiments, for efficiency, we use the search
space with N = 3 cells for all experiments.

2) Searching Alignment Architecture: The searching al-
gorithm for the AASPC method is described in Algorithm
1. AASPC is a reinforcement-based NAS framework which
leverages a controller network to sample architecture from
the search space. The controller network is a LSTM that
samples search choice via a softmax classifier. We denote by
θ the learnable parameters of the controller. The policy of the
controller is denoted by π(m; θ).

In each epoch, the training procedure of AASPC consists
of two phases. In the first phase, we fix the parameters of the



TABLE I
ACCURACY (%) ON THE OFFICE-31 DATASET WITH RESNET-50 AS THE BACKBONE.

Type Method A→D A→W D→A D→W W→A W→D Avg

Source Only ResNet-50 [3] 68.9 68.4 62.5 96.7 60.7 99.3 76.1

Dist. Based

JDA [30] 80.7 73.6 64.7 96.5 63.1 98.6 79.5
DDC [9] 76.5 75.6 62.2 96.0 61.5 98.2 78.3
DAN [10] 78.6 80.5 63.6 97.1 62.8 99.6 80.4
D-CORAL [13] 81.5 77.0 65.9 97.1 64.3 99.6 80.9
JAN [23] 84.7 85.4 68.6 97.4 70.0 99.8 84.3
MDDA [31] 86.3 86.0 72.1 97.1 73.2 99.2 85.7

Adv. Based

DANN [32] 79.7 82.0 68.2 96.9 67.4 99.1 82.2
ADDA [19] 77.8 86.2 69.5 96.2 68.9 98.4 82.9
CAN [33] 85.5 81.5 65.9 98.2 63.4 99.7 82.4
DDAN [31] 84.9 88.8 65.3 96.7 65.0 100.0 83.5

With NAS ABAS [29] 87.6 89.4 64.1 98.4 69.3 99.8 84.8
AASPC (Ours) 90.8 93.1 70.4 98.7 69.1 100.0 87.0

controller θ and train the shared weights ω in the search space
Aspace. Specifically, the controller samples an architecture Am

from the search space Aspace with policy π(m; θ). For each
mini-batch from Ds and Dt, LPC is computed according to Eq.
(2) and the shared weights ωm of the sampled architecture are
updated by minimizing LPC. In the second phase, we fix all
the shared weights ω in the search space Aspace and update
the parameter θ of the controller. Specifically, after one epoch
of training, −LPC is used as the reward to update the policy
π(m; θ) in the controller. The gradient is computed via the
REINFORCE algorithm [34] with a moving average baseline.

In summary, the AASPC method trains a supernet that
contains all shared parameters in the search space during
the searching process. The AASPC method samples a child
network in each epoch to calculate the loss function defined
in Eq. (2) and updates its shared parameters in the search
space. Parameters in the controller are updated by the reward,
which is the negative loss of the sampled child network. After
searching, all weights of the final architecture are retained
for testing. Different from two-stage one-shot NAS methods,
there is no need for the AASPC method to retrain the final
architecture from scratch for testing since AASPC can directly
optimize the objective in Eq. (2), which is just the negative
reward for the controller, in an end-to-end manner. In this
way, the architecture is optimized alongside child networks’
parameters. Therefore, the final architecture derived from the
AASPC method can be deployed directly without parameter
retraining, which improves the overall efficiency.

IV. EXPERIMENTS

This section empirically evaluates the proposed method.

A. Setup

We conduct experiments on three benchmark datasets, in-
cluding Office-31 [35], Office-Home [36], and VisDA-2017
[37]. The Office-31 dataset has 4,652 images in 31 categories
collected from three distinct domains: Amazon (A), Webcam
(W) and DSLR (D). We can construct six transfer tasks: A
→ W, D → W, W → D, A → D, D → A, and W →

A. The Office-Home dataset consists of 15,500 images in 65
object classes under the office and home settings, forming
four extremely dissimilar domains: Artistic (Ar), Clip Art
(Cl), Product (Pr), and Real-World (Rw) and 12 transfer
tasks. The VisDA-2017 dataset has over 280K images across
12 classes. It contains two very distinct domains: Synthetic,
which contains renderings of 3D models from different angles
and with different lighting conditions, and Real that are natural
images. We study a transfer task: Synthetic → Real on this
dataset.

We compare the proposed AASPC method with state-
of-the-art DA methods, including Joint Distribution Adapta-
tion (JDA) [30], Deep Domain Confusion (DDC) [9], Deep
Adaptation Network (DAN) [10], Domain Adversarial Neural
Network (DANN) [32], Correlation Alignment for Deep Do-
main Adaptation (D-CORAL) [13], Residual Transfer Net-
works (RTN) [38], Joint Adaptation Networks (JAN) [23],
Adversarial Discriminative Domain Adaptation (ADDA) [19],
Conditional Domain Adversarial Networks (CDAN) [17], Col-
laborative and Adversarial Network (CAN) [33], Manifold
Dynamic Distribution Adaptation (MDDA) [31], and Dynamic
Distribution Adaptation Network (DDAN) [31]. The results of
baseline methods are directly reported from DDAN [31] and
CDAN [17].

We leverage the ResNet-50 network [3] pretrained on the
ImageNet dataset as the backbone for the feature extrac-
tion. For optimization, we use the mini-batch SGD with the
Nesterov momentum 0.9. The learning rate is adjusted by
ηp = η0(1+αp)−β , where p is the index of training steps, η0
= 0.1, α = 0.001, and β = 0.75. The batch size is set to 128
for all the datasets.

B. Results

The classification results on the Office-31 dataset are shown
in Table I. As illustrated in Table I, the proposed AASPC
method achieves the best average accuracy.

In four out of six transfer tasks, AASPC performs the
best, especially on transfer tasks A→D and A→W, which
is transferring from a large source domain to a small target



TABLE II
ACCURACY (%) ON THE OFFICE-HOME DATASET WITH RESNET-50 AS THE BACKBONE.

Type Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

Source Only ResNet-50 [3] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

Dist. Based

JDA [30] 38.9 54.8 58.2 36.2 53.1 50.2 42.1 38.2 63.1 50.2 44.0 68.2 49.8
DAN [10] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
D-CORAL [13] 42.2 59.1 64.9 46.4 56.3 58.3 45.4 41.2 68.5 60.1 48.2 73.1 55.3
JAN [23] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

Adv. Based
DANN [32] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN [17] 46.6 65.9 73.4 55.7 62.7 64.2 51.8 49.1 74.5 68.2 56.9 80.7 62.8
DDAN [31] 51.0 66.0 73.9 57.0 63.1 65.1 52.0 48.4 72.7 65.1 56.6 78.9 62.5

With NAS AASPC (Ours) 46.53 68.42 75.24 58.3 66.3 67.48 56.94 44.77 75.33 69.26 51.94 80.33 63.4

domain and in the other two tasks, the AASPC method
performs slightly worse than the best baseline method, which
implies that the proposed AASPC model works well when the
source data is sufficient and it can learn transferable feature
representations for effective domain adaptation.

Table II shows the classification results on the Office-Home
dataset. According to the results, AASPC achieves the best
average accuracy and performs the best in eight out of twelve
transfer tasks, while transferring from a large source domain
to a small target domain (i.e., Cl→Ar, Pr→Ar, and Rw→Ar),
AASPC achieves the best performance and this phenomenon
is similar to the Office-31 dataset, which again demonstrates
that the proposed AASPC model works well when the source
data is sufficient.

TABLE III
ACCURACY (%) ON THE VISDA-2017 DATASET WITH RESNET-50 AS THE

BACKBONE.

Type Method Synthetic→Real

Source Only ResNet-50 [3] 45.6

Dist. Based
DAN [10] 53.0
RTN [38] 53.6
JAN [23] 61.6

Adv. Based DANN [32] 55.0
CDAN [17] 66.8

With NAS AASPC (Ours) 68.75

According to experimental results on the most challenging
VisDA-2017 dataset shown in Table III, the proposed AASPC
method outperforms all the baseline methods by improving by
1.9% over state-of-the-art baseline methods (i.e., CDAN) on
this dataset, which again demonstrates the effectiveness of the
proposed method.

C. Discussion

1) Ablation Study: To investigate the efficacy of key de-
signs of the proposed AASPC method, we conduct ablation
study on the Office-31 dataset by comparing with variants
of AASPC, including Source Only (no distance calculation
and architecture search), AAS (AASPC without population
correlation), and PC (AASPC without alignment architecture
search). According to the results shown in Table V, the
AASPC method outperforms both AAS and PC methods.

TABLE IV
COMPARISON OF PC WITH OTHER DISTANCE FUNCTIONS ON THE

VISDA-2017 DATASET WITH RESNET-50 AS THE BACKBONE.

Measurement Synthetic→Real

None 57.68
Proxy A-distance 56.36
KL-divergence 56.27
MMD 58.76
CORAL 56.66
CMD 56.65

PC (Ours) 65.25

AAS is inferior to AASPC with a drop of 3.26%, while it
performs better than Source Only by 2.1% in terms of the
average accuracy. PC performs better than Source Only by
5.36% on the average accuracy. AASPC further improves over
PC by 2.41% and 1.76% on the A→D and A→W tasks in
terms of the accuracy, respectively. This experiment verifies
the effectiveness of both the AAS and PC components in the
AASPC method.

2) Effectiveness of Population Correlation: To demonstrate
the effectiveness of the proposed PC, we replace the mea-
surement with other widely used distance functions on the
Office-31, Office-Home, and VisDA-2017 datasets. We then
compare the performance of PC with these distance functions,
including ProxyA-distance, Kullback-Leibler divergence (KL-
divergence), Maximum Mean Discrepancies (MMD), CORre-
lation ALignmen (CORAL), and Central Moment Discrepancy
(CMD). For a fair comparison, we only replace the minus of
the PC with these distance functions in Eq. (2). Specifically,
we adopt the ResNet-50 as the backbone, following with
the bottleneck layer (consisting of a fully connected layer,
a batch normalization layer, a ReLU activation function, and
a dropout function) used for generating hidden features and
a fully connected layer used for prediction. According to
experimental results shown in Tables VI, IV and VII, we can
see that none of the distance functions can obtain performance
improvement compared with no distance function used (i.e.,
ResNet-50). One possible reason is that the normalization layer
used in the bottleneck layer has improved the performance
of the ResNet-50 and adapting these distance functions can
not improve the performance further. However, the proposed
PC can still obtain performance improvement over ResNet-50,
which indicates the effectiveness of the proposed PC.



TABLE V
ABLATION STUDY ON THE OFFICE-31 DATASET WITH RESNET-50 AS THE BACKBONE.

Method A→D A→W D→A D→W W→A W→D Avg

Source Only 83.53 80.50 64.61 98.49 62.69 100.0 81.64
AAS (AASPC w/o PC) 86.35 89.18 64.75 98.24 63.90 100.0 83.74
PC (AASPC w/o AAS) 88.35 91.32 70.36 98.49 69.05 100.0 86.26
AASPC 90.76 93.08 70.36 98.74 69.05 100.0 87.0

TABLE VI
COMPARISON OF PC WITH OTHER DISTANCE FUNCTIONS ON THE OFFICE-31 DATASET WITH RESNET-50 AS THE BACKBONE.

Measurement A→D A→W D→A D→W W→A W→D Avg

None 83.53 80.50 64.61 98.49 62.69 100.0 81.64
Proxy A-distance 82.73 81.01 64.04 98.11 61.77 100.0 81.28
KL-divergence 83.94 79.75 63.90 97.86 63.51 99.80 81.46
MMD 83.13 79.25 64.11 98.74 63.12 100.0 81.39
CORAL 84.34 80.25 64.61 98.24 62.80 99.80 81.67
CMD 82.93 79.50 64.29 98.62 63.10 100.0 81.41

PC 88.35 91.32 70.36 98.49 69.05 100.0 86.26

TABLE VII
COMPARISON OF PC WITH OTHER DISTANCE FUNCTIONS ON THE OFFICE-HOME DATASET WITH RESNET-50 AS THE BACKBONE.

Measurement Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

None 43.41 66.55 74.64 56.61 63.98 65.32 53.36 39.36 72.64 64.73 46.30 76.55 60.29
Proxy A-distance 43.21 65.44 74.85 55.09 62.51 65.37 52.33 38.63 72.83 64.57 46.23 76.66 59.81
KL-divergence 44.01 66.75 74.50 55.75 63.42 66.51 52.74 38.14 73.43 65.84 44.79 77.13 60.25
MMD 43.78 66.28 74.48 55.62 64.07 66.19 53.40 38.30 73.15 64.89 45.52 77.43 60.26
CORAL 44.15 65.85 74.16 55.42 63.01 66.83 52.95 39.38 72.53 65.14 45.96 77.07 60.20
CMD 44.40 65.92 74.50 54.68 63.37 67.07 52.78 38.88 72.94 65.64 45.29 77.36 60.24

PC 46.19 66.03 73.7 57.89 63.48 65.80 56.94 44.19 75.58 69.02 51.11 78.89 62.24
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3) Effectiveness of Alignment Architecture Search: To
demonstrate the effectiveness of the alignment architecture
search (AAS) in the AASPC method, we apply AAS to various
distance functions on the Office-31 dataset. Specifically, we
modify Algorithm 1 to search alignment architecture for other
measurements by replacing the minus of the PC with other
distance functions in LPC. According to experimental results
shown in Figure 3, AAS can improve the performance of
various distance functions on the Office-31 dataset, which
demonstrates the effectiveness and generalization ability of the
alignment architecture search.

TABLE VIII
COMPARISON OF TRAINING COMPLEXITY ON OFFICE-31 DATASET.

TRAINING TIME PER EPOCH AND GPU MEMORY CONSUMPTION ARE
RECORDED ON ONE SINGLE NVIDIA TESLA V100S GPU WITH BATCH

SIZE 128.

Method Time per Epoch (s) GPU memory (M) Avg Acc. (%)

Source Only 11.4 24865 65.3

PC 12.9 25085 86.3
AASPC 13.6 25185 87.0

4) Hyper-parameter Sensitivity: We investigate the sensi-
tivity with respect to two hyper-parameters: the training batch
size and trade-off parameter λ in Eq. (2). We set the value of
batch size from 32 to 256 and λ ∈ {0.1, 1, 10} to obtain the
performance change of AASPC. According to Figure 6, when
the batch size is small, the performance becomes worse. This
is because minimizing the loss in Eq. (1) may make samples
in different classes close to each other, especially when λ is
relatively large. The performance of AASPC is stable when
the batch size is larger than 128 for both λ = 0.1 and λ = 1,
which indicates that AASPC is relatively insensitive to a large
batch size when λ is not so large, i.e., 0.1 or 1.

5) Complexity Analysis: In Table VIII, we compare the
training time and performance of AASPC and PC with the
source only baseline, which does not compute any distance
functions during the training process. Compared with the
source only baseline, the training time per epoch and occupied
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Fig. 4. Searched architecture for transfer task D→W of the Office-31 dataset. Left: architecture within the three cells. Right: connections between the three
cells, PC, and classifier.
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Fig. 5. t-SNE visualization of different methods for the transfer task A→D in the Office-31 dataset.
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Fig. 6. Sensitivity of AASPC to batch size and λ on the Office-31 dataset.

GPU memory slightly increase for PC and AASPC while the
average accuracy dramatically improves. Hence, both PC and
AASPC methods introduce negligibly additional computation
costs for considerable performance improvement.

6) Learned Architecture: Figure 4 shows the architecture
found by AASPC for the transfer task D→W constructed on
the Office-31 dataset. The left part of Figure 4 shows the
search choice within the three cells found by the AASPC
method and the right part of Figure 4 shows the connections
among the three cells, PC and classifier. In Cell 0, the AASPC

method chooses the FC layer with the same size as the input
and the skip connection is connected to the batch-norm layer.
In Cell 1, the choice of FC is the same as Cell 0 but the
skip connection starts from the cell input. In Cell 2, the skip
connection is the same as Cell 2 but the FC layer is of half
size of the input. For connections between cells, the AASPC
method chooses to use the output of Cell 0 to calculate the PC
and the output of Cell 1 to calculate the classification loss. For
a simple transfer task D→W, the searched architecture only
has two cells, which indicates that the AASPC method can
adaptively learn architecture depending on the complexity of
the DA task. Moreover, the location of the skip connection
moves forward in Cell 1 and Cell 2 when compared with Cell
0, which helps reduce the network depth and alleviates the
vanishing gradient problem.

7) Feature Visualization: In Figure 5, we visualize the
hidden feature representations of the transfer task A→D
constructed on the Office-31 dataset learned by source samples
only, source and target samples with PC, and source and target
samples with AASPC, respectively. According to Figure 5, we
can see that samples with the representations learned by PC
are more distinguishable than those by source only. The repre-
sentations learned by AASPC are more separable than those by
PC, which implies that the proposed AASPC method can learn
discriminative and transferable feature representations for DA.



V. CONCLUSION

In this paper, we propose a new PC function that can
measure domain similarity. We further design the AASPC
framework that searches deep alignment architecture for DA
tasks. Experiments results on the Office-31, Office-Home,
and VisDA-2017 datasets demonstrate the effectiveness of the
proposed method. Moreover, the proposed AASPC framework
has shown its potential to search alignment architecture for
various DA methods. In our future studies, we try to extend
the proposed AASPC framework to learn architecture for other
DA methods and settings.
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