
Effective, Efficient and Robust Neural Architecture
Search

Zhixiong Yue1,2,3, Baijiong Lin2, Yu Zhang2,4, and Christy Liang3
1Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology
2Department of Computer Science and Engineering, Southern University of Science and Technology

3School of Computer Science, University of Technology Sydney
4Peng Cheng Laboratory

yuezx@mail.sustech.edu.cn, {bj.lin.email,yu.zhang.ust}@gmail.com, jie.liang@uts.edu.au

Abstract—Designing neural network architecture for embed-
ded devices is practical but challenging because the models are
expected to be not only accurate but also enough lightweight
and robust. However, it is challenging to balance those trade-
offs manually because of the large search space. To solve this
problem, we propose an Effective, Efficient, and Robust Neural
Architecture Search (E2RNAS) method to automatically search
a neural network architecture that balances the performance,
robustness, and resource consumption. Unlike previous studies,
the objective function of the proposed E2RNAS method is
formulated as a multi-objective bi-level optimization problem
with the upper-level subproblem as a multi-objective optimization
problem that considers the performance, robustness, and resource
consumption. To solve the proposed objective function, we inte-
grate the multiple-gradient descent algorithm, a widely studied
gradient-based multi-objective optimization algorithm, with the
bi-level optimization. Experiments on benchmark datasets show
that the proposed E2RNAS method can find robust architecture
with low resource consumption and comparable classification
accuracy.

Index Terms—neural architecture search, adversarial robust-
ness, out-of-distribution

I. INTRODUCTION

Deep learning has achieved great successes in many areas,
such as computer vision, natural language processing, speech,
gaming. The design of the neural network architecture is
essential to such success. However, such design relies heavily
on experts’ knowledge and experience, and even experienced
experts cannot design the optimal architecture. Therefore,
Neural Architecture Search (NAS), which aims to design the
architecture of neural networks in an automated way, has
attracted great attention in recent years.

Although NAS has demonstrated the capability to find neu-
ral network architecture with state-of-the-art performance in
various tasks [1]–[3], conventional NAS methods are typically
only designed to optimize the accuracy during the architecture
searching process while neglecting other significant objectives,
resulting in very limited application scenarios.

Actually, performance is not the only factor to be considered
in real-world applications. On the contrary, resource consump-
tion and robustness may be more critical. For example, a deep
neural network with high computational burden and storage
demands is difficult to be deployed to embedded devices (e.g.

Corresponding author: Yu Zhang.

Architecture

Model

Evaluation

Multi-Objective
Optimization

Architecture

Model

Evaluation

Fig. 1. Comparison of the architecture searching procedure between DARTS
[1] (top) and the proposed E2RNAS (bottom). We formulate E2RNAS as a
multi-objective bi-level optimization problem with two key differences with
DARTS: 1) we train the model with both in- and out-of-distribution data
samples to improve the robustness. 2) we evaluate the E2RNAS model with
five objectives, including the validation loss Lval(θ,α) for effectiveness and
the number of parameters Lnop(α), the number of operations Lflops(α)
for efficiency, and the out-of-distribution robustness loss Lood(θ,α) and the
adversarial robustness loss Ladv(θ,α) for robustness.

mobile phone and IoT device). Besides, it is well known that
the trained neural networks are easily misled by adversarial
examples and can not exactly distinguish in- and out-of-
distribution samples, making them hard to deploy in safety-
sensitive applications such as autonomous driving. Hence,
there exists an open problem: Can we find an automatic way
to design a robust architecture with competitive performance
to be deployed in resource-aware platforms?

This open problem implicitly indicates a trade-off among
multiple objectives in NAS. Recently, some studies have con-
sidered multiple objectives during the architecture searching
process. However, most of those works (e.g. [3]–[5]) only
focus on the hardware-aware NAS problem, i.e. designing an
architecture that can be deployed in resource-limited devices.
There exist few studies [6], [7] that statistically investigate
the influence of architecture on the robustness, such as the

adversarial robustness and out-of-distribution robustness from
a NAS perspective. However, they do not consider the trade-
off between the performance and robustness.

To answer the open problem, in this paper, we propose an
Effective, Efficient, and Robust Neural Architecture Search
method (E2RNAS) to design an architecture by explicitly
balancing the trade-off among the performance, resource
consumption and robustness. Specifically, we consider the
validation accuracy for the effectiveness, the number of param-
eters and FLOPs for the efficiency, and the out-of-distribution
robustness and adversarial robustness for the robustness. Built
on Differentiable Architecture Search (DARTS) [1], the pro-
posed E2RNAS formulates the entire objective function as a
multi-objective bi-level optimization problem where the upper-
level subproblem is a multi-objective optimization problem
by considering the effectiveness, efficiency, and robustness.
To solve the resultant problem, we propose a gradient-based
optimization algorithm by combining the Multiple Gradient
Descent Algorithm (MGDA) [8] and the bi-level optimization
algorithm. In summary, the contributions of this paper are
three-fold.
• We propose the E2RNAS method for searching effective,

efficient, and robust network architecture, a practical
DARTS-based framework for multi-objective NAS and
can be seamlessly combined with DARTS and its variants.

• We formulate the objective function of the E2RNAS
method as a multi-objective bi-level optimization problem
and propose an efficient gradient-based algorithm to solve
it.

• Experiments on benchmark datasets show that the pro-
posed E2RNAS method can find robust architecture with
less resource consumption and comparable classification
accuracy.

II. RELATED WORKS

A. Multi-Objective Optimization

Multi-objective optimization aims to optimize more than
one objective function simultaneously. Among different tech-
niques to solve multi-objective problems, we are interested
in gradient-based multi-objective optimization algorithms [8],
which leverage the Karush-Kuhn-Tucker (KKT) conditions [9]
to find a common descent direction for all objectives. In this
paper, we utilize one such method, i.e. MGDA [8]. With n
objective functions {Li(θ)}ni=1 to be minimized, MGDA is
an iterative method by first solving the following quadratic
programming problem as

min
γ1,··· ,γn

∥∥∥∥∥
n∑
i=1

γi∇θLi(θ)

∥∥∥∥∥
2

2

s.t. γi ≥ 0,

n∑
i=1

γi = 1, (1)

where ‖ · ‖2 denotes the `2 norm of a vector and γi can be
viewed as a weight for the ith objective, and then minimizing∑n
i=1 γiLi(θ) with respect to parameters θ. When convergent,

the MGDA can find a Pareto-stationary solution.

B. Multi-Objective NAS

Due to the complex application scenarios in the real world,
recent works on NAS take multiple objectives instead of only
accuracy one objective into consideration, which implicitly
indicates a multi-objective optimization problem. Specifically,
to search an efficient architecture to be deployed in resource-
limited platforms, some workers take the resource-constraint
objectives such as the number of parameters, FLOPs, latency,
and energy consumption into consideration [4]. Among those
works, different techniques are applied to solve this multi-
objective optimization problem. For example, some work [2]
apply evolutionary algorithms to approximate the entire Pareto
front, but the search cost is quite high. Some work [3] regard
the combination of multiple targets like accuracy and latency
as rewards to optimize the controller sampling an architecture
from the search space using reinforcement learning algorithms.
The most relevant to our work is the gradient-based method
[5], [10], [11], especially the DARTS-based method [5], [10].
GOLD-NAS [10] regards the resource constraint like FLOPs
as the regularization terms, whose coefficients gradually in-
crease to prune the architecture during the search procedure.
Built on DARTS [1], RC-DARTS [5] considers to search
architecture with high accuracy while constraining the model
size and FLOPs of the searched architecture within user-
defined intervals. Therefore, the proposed objective function
is formulated as a constrained optimization problem, and a
projected gradient descent method is applied to solve it.

C. Robust Architecture Search

To search a robust architecture, some works [7], [12]
investigate the influence of architecture on adversarial robust-
ness from a NAS perspective and then discover a family of
adversarially robust architecture based on their observations.
Different with [7], [12], [13] consider adversarial robustness
as an optimized objective to search architecture that can
defend multiple types of adversarial attacks. This problem is
formulated as a multi-objective optimization and solved by
an evolutionary algorithm. Besides, similar with [7], [12], [6]
study what topology of neural network architecture is best for
out-of-distribution robustness.

III. THE E2RNAS METHOD

In this section, we present the proposed E2RNAS method.
We first give an overview of the DARTS method and then
introduce how to achieve two kinds of robustness and formu-
late the objectives to constrain the resource cost, including the
number of parameters and FLOPs in the searched architecture.
Finally, we present the multi-objective bi-level formulation of
the proposed E2RNAS method and its optimization.

A. Preliminary

DARTS [1] aims to learn a Directed Acyclic Graph (DAG)
called cell, which can be stacked to form a neural network
architecture. Each cell consists of N nodes {di}N−1i=0 , each of
which denotes a hidden representation. O denotes a discrete
operation space. The edge (di, dj) of the DAG represents

an operation function o(·) (e.g. skip connection or 3 × 3

pooling) from O with a probability α
(i,j)
o to perform at the

node di. Therefore, we can formulate each edge (di, dj) as
a weighted sum function to combine all the operations in O
as fi,j(di) =

∑
o∈O

exp(α(i,j)
o)∑

o′∈O exp(α
(i,j)

o′)
o(di). An intermediate

node dj is the sum of its predecessors, i.e. dj =
∑
i<j fi,j(di).

The output of the cell, i.e. node dN−1, is the concatenation
of all the output of nodes excluding the two input nodes d0
and d1. Therefore, α = {α(i,j)

o }(i,j)∈E, o∈O can parameterize
the searched architecture, where E denotes the set of all the
edges from all the cells. Let Dtr and Dval denote the training
dataset and validation dataset, respectively. DARTS is to solve
a bi-level optimization problem as

min
α
Lval(θ∗(α),α)

s.t. θ∗(α) = arg minθ Ltr(θ,α), (2)

where θ denotes all the weights of the neural network,
the average training loss of a neural network is represented
by Ltr(θ,α) = 1

|Dtr|
∑

(x,y)∈Dtr
`(θ,x, y) with parameter

weight θ and an architecture α and `(θ,x, y) denotes the loss
function for each sample. Lval(θ∗(α),α) is defined similarly.
Here minα Lval(θ∗(α),α) is called the Upper-Level (UL)
subproblem and minθ Ltr(θ,α) is called the Lower-Level
(LL) subproblem. When the search procedure finishes, the
final architecture can be determined by the operation with
the largest probability in each edge from each cell, i.e. ,
o(i,j) = arg maxo∈O α

(i,j)
o .

B. Objective Functions for Robustness

In E2RNAS, we expect the searched architecture to be
robust, which means that the trained model with the searched
architecture can distinguish test samples whether from in- or
out-of-distribution, and its performance is stable when adding
some perturbations to the in-distribution samples. To improve
the robustness of the searched architecture, we consider both
Out-of-Distribution (OoD) robustness and adversarial robust-
ness as objective functions in the UL subproblem.

1) Out-of-Distribution Robustness: Let Cin denote the label
distribution of the training dataset Dtr and the validation
dataset Dval. We use an OoD dataset Dood with its corre-
sponding label distribution Cout and Cin∩Cout = ∅ to measure
the OoD robustness of the neural network. Following [14], we
formulate the OoD robustness objective function as

Lood(θ,α) =
1

|Dood|
∑

x∈Dood

KL(U‖S(x,θ)), (3)

where U represents a discrete uniform distribution, i.e. U =
(1
k , · · · ,

1
k) if the neural network is a k-class classification

model, S(x,θ) is the probability distribution of x predicted
by the neural network with weights in θ, and KL(·‖·) denotes
the Kullback-Leibler (KL) divergence to measure the distance
between U and S(x,θ). Namely, the predictive distributions
of OoD samples are forced to be uniform distributions. In this
way, the maximum predictive probability of OoD samples is

lower than in-distribution samples so that the neural network
can distinguish in- and out-of-distribution to avoid the over-
confidence in its predictions.

2) Adversarial Robustness: To evaluate the adversarial ro-
bustness of the neural network with the searched architecture
α, we first perturb each data sample in the validation dataset
Dval by PGD adversarial attack [15] to generate a perturbed
validation dataset denoted by Dadvval . Then we compute the
average loss on this perturbed dataset as

Ladv(θ,α) =
1

|Dadvval |
∑

(x,y)∈Dadv
val

`(θ,x, y). (4)

C. Objective Functions of Resource Constraints

architecture with less resource consumption have more
application scenarios even in resource-constrained mobile de-
vices. Therefore, we regard resource constraints as the desired
objectives and mainly focus on the number of parameters and
multiply-add operations (i.e. FLOPs).

1) Number of Parameters: By following DARTS [1], we
determine the operation on each edge of each cell in the
final architecture as the one with the largest probabilities.
So the number of parameters in an architecture can be
computed as N (α) =

∑
(i,j)∈E n

argmaxo∈O α
(i,j)
o

, where
no denotes the number of parameters corresponding to the
operation o(·). Note that arg max is a non-differentiable
operation, making the computation of the gradient of N (α)
with respect to α infeasible. To make such operation dif-
ferentiable, we use the softmax function to approximate
the arg max operation and then formulate it as N̂ (α) =∑

(i,j)∈E
∑
o∈O

exp(α(i,j)
o)∑

o′∈O exp(α
(i,j)

o′)
no. Furthermore, to prevent

the model to search over-simplified architecture (i.e. the one
containing too many parameter-free operations) that leads to
unsatisfactory performance, we add a lower bound L to the
parameter size N̂ (α). Therefore, the objective function of the
number of parameters can be formulated as

Lnop(α) = |N̂ (α)− L|. (5)

2) FLOPs: Similar to the number of parameters, FLOPs
also only depend on the architecture α. Thus we formulate the
objective function of FLOPs similarly to the number of param-
eters (i.e. Eq. (5)). First, we carefully compute the FLOPs fo
of each operation o(·) in O. Then we use the softmax function
to approximate the arg max operation and calculate the total
FLOPs F̂(α) =

∑
(i,j)∈E

∑
o∈O

exp(α(i,j)
o)∑

o′∈O exp(α
(i,j)

o′)
fo. Finally

we constrain F̂(α) with a lower bound F and formulate the
objective function of FLOPs as

Lflops(α) = |F̂(α)− F |. (6)

In practice, we can specify the minimum constraints L in
Eq. (5) and F in Eq. (6) to search an architecture with an
expected model size. On the other hand, we can also get a
set of Pareto-optimal architecture by adjusting the minimum
constraints as shown in Table I.

D. Multi-Objective Bi-Level Formulation

E2RNAS aims to search the architecture α to minimize the
validation loss for the effectiveness, the number of parameters
and FLOPs for the efficiency, and the OoD robustness and
adversarial robustness for the robustness. Thus, we combine
Eqs. (3), (4), (5) and (6) to formulate the entire objective
function as

min
α

U(θ∗(α),α) = (Lval(θ∗(α),α),Lood(θ∗(α),α),

Ladv(θ∗(α),α),Lnop(α),Lflops(α))

s.t. θ∗(α) = arg minθ (Ltr(θ,α) + Lood(θ,α)). (7)

where θ∗(α) indicates that the network weights θ depends
on the network architecture α. Objective loss functions
Lval,Lood,Ladv depend on the network weights and archi-
tecture. Objective loss functions Lnop,Lflops only depend on
the network architecture.

Problem (7) is similar to the bi-level optimization problem
(2) in the original DARTS, where the LL subproblem is
similar, but there exists significant differences in that the UL
subproblem contains five objectives, as shown in Figure 1. On
the other hand, different from RC-DARTS [5] that directly
adds the resource constraint into the original DARTS objective
function (2) as a constraint and formulates the objective
function as a constrained optimization problem or GOLD-
NAS [10] that regards resource constraint as the regularization
term and then optimizes as a single-objective optimization
problem, we evaluate all the objectives in the UL subproblem
and cast it as a multi-objective optimization problem solving
by a gradient-based multi-objective method, i.e. MGDA.

Therefore, problem (7) is a multi-objective bi-level opti-
mization problem which is also a generalization of problem
(2) in the DARTS and we use the MOML method [16] to
solve it. It can be understood as a two-stage optimization.
Firstly, when given an architecture parameter α, we can learn
a model with optimal model weights θ∗ via the empirical
risk minimization on both training dataset and OoD dataset.
Secondly, given θ∗, the architecture parameter α is updated on
the validation dataset by making a trade-off among its perfor-
mance, robustness, and resources consumption. Therefore, we
can solve the problem (7) in two stages, which are described
as follows.

a) Updating θ: Given the architecture parameter αt, θ
can be simply updated as

θt+1 = θt − ηθ∇θ(Ltr(θt,αt) + Lood(θt,αt)), (8)

where t denotes the index of the iteration and ηθ denotes the
learning rate.

b) Updating α: After obtaining θt+1, we can optimize
the UL subproblem to update the architecture parameter α. As
the UL subproblem is a multi-objective optimization problem,
we adopt the MGDA to solve it. In MGDA, we first need
to solve problem (1), which requires the computation of the
gradients of the five objectives with respect to α. The gradient
of Lnop(αt) and Lflops(αt) with respect to α is easy to
compute, while the gradient of the remaining three objectives

with respect to α is a bit complicate as θ∗(αt) is also
a function of α and it is too expensive to obtain θ∗(αt).
Therefore, we use a second-order approximation as

∇αLval(θ∗(αt),αt)
≈∇αLval(θt+1 − ηθ∇θLtr(θt+1,αt),αt). (9)

where ξ denotes the learning rate for inner optimization.
Obviously when ηθ = 0, θt+1 becomes an approximation of
θ∗(αt) and Eq. (9) degenerates to the first-order approxima-
tion, which can speed up the gradient computation and reduce
the memory cost but lead to worse performance [1]. So we
use the second-order approximation in Eq. (9). Similarly, the
gradient of Ladv(θ∗(αt),αt) and Lood(θ∗(αt),αt) can be
computed approximately. Then we solve the problem (1) to get
the weight Γ = (γ1, · · · , γ5) for five objectives, respectively.
While the problem (1) has no analytical solution, we apply
the Frank-Wolfe algorithm [17] to solve it.

After that, we can update αt as

αt+1 = αt − ηα∇αt

(
U(θ∗(αt),αt)Γ

T
)
, (10)

where ηα denotes the learning rate for α. The whole algorithm
is summarized in Algorithm 1.

Algorithm 1 E2RNAS
Input: Dataset Dtr and Dval, OoD dataset Dood, batch size

B, perturbation size ε, minimum constraint L and F ,
learning rates ηα and ηθ

Output: Learned architecture parameter α
1: Randomly initialized α0 and θ0, t := 0;
2: while not converged do
3: Sample a mini-batch of size B;
4: Update θt+1 according to Eq. (8);
5: Compute five objective functions and the corresponding

gradients;
6: Compute weights Γ by solving problem (1);
7: Update αt according to Eq. (10);
8: t := t+ 1;
9: end while

IV. EXPERIMENTS

In this section, we empirically evaluate the E2RNAS method
on CIFAR-10 [18], CIFAR-100 [18] and ImageNet-1K [19]
datasets.

A. Experimental Datasets

The CIFAR-10 dataset contains 50,000 training images and
10,000 testing images from 10 classes, each of which has
6,000 images with a 32× 32 resolution in total. The CIFAR-
100 dataset contains 100 classes grouped into 20 super-classes,
with 500 training images and 100 testing images for each
class. For the ImageNet dataset, we use the ImageNet-1K
benchmark, which contains 1K high-level categories from the
original 22K categories. For OoD test, we use the Street View
House Numbers (SVHN) dataset [20], which consists of the
images of house numbers captured from the Google street view

and contains 10 classes with 73,257 images used for training
and 26,032 images for testing.

B. Implementation Details

1) Search Space: The search space adopts the same setting
as DARTS [1]. There are two types of cells, i.e. the reduction
cell and the normal cell. The reduction cells are located at the
1/3 and 2/3 of the total depth of the network. Other cells in the
network belong to the normal cell. There are 7 nodes in each
cell for both reduction and normal cells, including four inter-
mediate nodes, two input nodes, and one output node. In both
normal and reduction cell, the set of operations O contains
eight operations, including 3×3 separable convolutions, 5×5
separable convolutions, 3 × 3 dilated separable convolutions,
5×5 dilated separable convolutions, 3×3 max pooling, 3×3
average pooling, identity, zero. For the convolution operator,
the ReLU-Conv-BN order is used. Each separable convolution
is applied twice.

2) Search Settings: In the search process, by following
DARTS [1], half of the whole training set is used for training a
model and the other half for validation. A small network of 8
cells is trained for 50 epochs with the batch size as 64 and ini-
tial channels as 16. For the adversarial robustness objective,
the adversarial examples are generated by the FGSM attack
follow the setting in [21] with the perturbation size ε = 2. For
the OoD robustness objective, we use the SVHN dataset [20]
as the OoD dataset, which is introduced in Section IV-A. For
the FLOPs objective, we use a function fo to approximate
the FLOPs of the corresponding operation o(·). Let C denote
the number of channels of input and output channels for the
operation. W and H denote the width and height of the feature
map. Ignoring padding and bias, the FLOPs of an ω×ω sepa-
rable convolution is 2(CHW+C2HW+ω2CHW+2CHW)
and the FLOPs of an ω × ω dilated separable convolutions is
CHW + C2HW + ω2CHW + 2CHW with stride = 1.
The FLOPs of a 3× 3 average pooling is CHW . The FLOPs
of a 3 × 3 max pooling, identity or none operation is zero.
The FLOPs of a skip connection is 0 if stride = 0 and is
C2HW+2×CHW if stride = 1. The ADAM optimizer with
the learning rate 3 × 10−4, the momentum β = (0.5, 0.999),
and the weight decay 1 × 10−3 is used to update α in the
UL subproblem. The SGD optimizer with the momentum 0.9
and the weight decay 3× 10−4 is used to update θ in the LL
subproblem. The proposed method is implemented in PyTorch
0.3.1, and all the experiments are conducted on one single
NVIDIA Tesla V100S GPU.

3) Retrain Settings: Following DARTS [1], a large network
of 20 cells is retrained on the full training set for 600 epochs,
with the batch size as 96, the initial number of channels 36, a
cutout of length 16, the dropout probability 0.2, and auxiliary
towers of weight 0.4.

4) Evaluation Metrics: For the performance objective, the
accuracy is tested on the full testing set. For the adversarial
robustness objective, adversarial examples are generated using
the PGD attack [15] with the perturbation size ε = 2/255
on the full testing set. The PGD attack takes 10 iterative

steps with the step size of 2.5ε as suggested in [22]. For
the OoD robustness objective, we evaluate the effectiveness
of distinguishing between in- and out-of-distribution samples
by measuring the Area Under the Precision-Recall (AUPR)
curve, which is a threshold-independent metric [14], [23] and
the PR curve describes the relationship between precision and
recall, where precision is computed by TP/(TP+FP), recall is
computed by TP/(TP+FN), and TP, FP, TN, and FN denote
true positive, true negative, false positive, and false negative.
We specify the OoD images as positives to compute the AUPR
in this paper.

C. Analysis on Experimental Results

1) Searched Architecture on CIFAR-10: The normal and
reduction cells searched by the E2RNAS on the CIFAR-
10 dataset are presented in Figure 2. The found reduction
cell does not contain any operation with parameters, which
reduces the parameter size of the architecture. Moreover,
it is notable that both normal and reduction cells do not
include the max pooling operation and begin with the average
pooling operation, which indicates the found architecture is
potentially OoD robust based on the observations in [6]. This
also coincides with experimental results in Table I.

c_{k-2}

0
avg_pool_3x3

1avg_pool_3x3
2avg_pool_3x3

3avg_pool_3x3

c_{k-1} skip_connect sep_conv_3x3

sep_conv_5x5
c_{k}sep_conv_5x5

c_{k-2}

0

avg_pool_3x3 1
avg_pool_3x3

2

avg_pool_3x3 3

avg_pool_3x3

c_{k-1}
avg_pool_3x3
avg_pool_3x3

c_{k}skip_connect
skip_connect

Fig. 2. The found normal cell (top) and reduction cell (bottom) on the CIFAR-
10 dataset by the proposed E2RNAS method. This architecture corresponds
to “E2RNAS-S1” in Table I.

2) Architecture Evaluation on CIFAR-10: The comparison
of the proposed E2RNAS method with state-of-the-art NAS
methods on the CIFAR-10 dataset is shown in Tables I
and II. Two variants of the E2RNAS method denoted by
E2RNAS-S1 and E2RNAS-S2 can obtain a set of Pareto-
optimal architecture by adjusting L in Eq. (5), Specifically,
we set L = 2.5 in Eq. (5) for E2RNAS-S1 and L = 3.5 for
E2RNAS-S2. Notably, E2RNAS outperforms NAS methods
[27], [28] by searching for a more lightweight architecture
with lower search costs of three or four orders of magnitude
and a comparable test error rate. Moreover, although ENAS
[29] slightly outperforms E2RNAS in terms of the search time,
it finds a much larger architecture with a higher test error.
Compared with the original DARTS in [1], E2RNAS achieves
a better trade-off among accuracy, efficiency, and robustness.
Specifically, although the test error of E2RNAS is slightly
higher than DARTS, E2RNAS can find more efficient and

TABLE I
COMPARISON WITH GRADIENT-BASED NAS METHODS ON THE CIFAR-10 DATASET. † REPRESENTS TRAINING WITHOUT THE CUTOUT AUGMENTATION.
‡ INDICATES THE USE OF THE PROVIDED GENOTYPE IN THE ORIGINAL PAPER. ↑ (↓) INDICATES A LARGER (LOWER) VALUE IS BETTER. THE SEARCH

COST IS RECORDED ON ONE SINGLE NVIDIA TESLA V100S GPU AND INCLUDES VALIDATION TIME WHILE SEARCHING. WE SET L = 2.5 IN EQ. (5)
FOR E2RNAS-S1 AND L = 3.5 FOR E2RNAS-S2.

Architecture Multiple- Test Err. Params FLOPs PGD Acc. OoD AUPR Search Cost
Objective (%) ↓ (M) ↓ (M) ↓ (%) ↑ (%) ↑ (GPU days) ↓

DARTS‡ [1] 2.59 3.3 539 25.68 31.44 0.6
P-DARTS‡ [24] 2.37 3.4 543 39.39 21.46 0.25
PC-DARTS‡ [25] 3.78 2.72 442 35.19 30.93 0.24

E2RNAS-S1
√

2.87 2.55 425 36.39 31.38 0.98
E2RNAS-S2

√
2.75 3.53 586 42.81 34.64 0.98

TABLE II
COMPARISON WITH VARIOUS ARCHITECTURE ON THE CIFAR-10

DATASET. “RL”, “EVO.” AND “SMBO” STAND FOR REINFORCEMENT
LEARNING-BASED, EVOLUTION-BASED AND SEQUENTIAL MODEL-BASED
OPTIMIZATION NAS METHOD, RESPECTIVELY. “MO-G”, “MO-RL” AND

“MO-EVO.” STAND FOR MULTI-OBJECTIVE GRADIENT-BASED,
MULTI-OBJECTIVE REINFORCEMENT LEARNING-BASED AND

MULTI-OBJECTIVE EVOLUTION-BASED NAS METHOD, RESPECTIVELY. “-”
INDICATES THAT THE CORRESPONDING RESULT IS NOT REPORTED. FOR

E2RNAS-S2, WE SET L = 3.5 IN EQ. (5).

Architecture Test Err. Params Search Cost Search
(%) ↓ (M) ↓ (GPU days) ↓ Method

DenseNet-BC [26] 3.46 25.6 - manual

AmoebaNet-B [27] 2.55 2.8 3150 Evo.
PNAS [28] 3.41 3.2 225 SMBO
ENAS [29] 2.89 4.6 0.5 RL

LEMONADE [2] 3.05 4.7 80 MO-Evo.
Proxyless-R [11] 2.30 5.8 - MO-RL
RAPDARTS [30] 2.83 2.8 12 MO-G
GOLD-NAS-K [10] 2.57 3.3 1.1 MO-G
RC-DARTS-C42 [5] 2.81 3.3 1 MO-G
FPNASNet [31] 3.01 5.76 - MO-G

E2RNAS-S2 2.75 3.53 0.98 MO-G

robust architecture. For example, compared with DARTS, the
E2RNAS-S1 architecture with only 2.55 MB model size and
425 MB FLOPs significantly improves the PGD accuracy by
11.11%, while the corresponding AUPR slightly decreases by
0.06%. Besides, although E2RNAS considers five objectives
to trade-off, its search process is slightly slower than DARTS
with only one objective. On the inference latency, DARTS is
with 28.64 ms latency on a single NVIDIA Tesla V100S GPU,
while E2RNAS-S1 is only with 19.42 ms and E2RNAS-S2 is
with 27.49 ms on the same device. Therefore, those results
indicate the efficiency of E2RNAS.

Even E2RNAS can achieve comparable performance with
variants of DARTS such as P-DARTS [24], and PC-DARTS
[25]. For example, compared E2RNAS-S2 with P-DARTS and
PC-DARTS, E2RNAS can find an architecture with a higher
AUPR and comparable performance on other objectives.

On the other hand, compared with multi-objective NAS
methods, E2RNAS outperforms LEMONADE [2], RC-
DARTS-C42 [5], RAPDARTS [30], and FPNASNet [31] by
finding more lightweight and effective architecture in a shorter
search time. Moreover, different from Proxyless-R [11] that
searches for architecture with good performance but a large

model size, E2RNAS can make a better trade-off between
the accuracy and parameter size. Besides, E2RNAS achieves
competitive performance with a faster search process when
compared with GOLD-NAS-K [10].

In summary, experimental results in Table I show that
E2RNAS can efficiently search a significantly robust archi-
tecture with a lower model size and comparable classification
accuracy, compared with state-of-the-art NAS methods.

3) Experimental Results on CIFAR-100: We also evaluate
the proposed E2RNAS method on the CIFAR-100 dataset. The
comparison of E2RNAS with DARTS [1], P-DARTS [24] and
PC-DARTS [25] is presented in Table III. The experimental
results on the CIFAR-100 dataset are similar to that on the
CIFAR-10 dataset in that E2RNAS can find a lightweight
and robust architecture with a slightly decreased test accuracy.
For example, compared with DARTS, E2RNAS-S1 with only
2.3 MB model size and 375 MB FLOPs can significantly
improve the PGD accuracy and AUPR. Moreover, compared
E2RNAS-S2 with P-DARTS and PC-DARTS, E2RNAS also
outperforms them in the robustness with a slight drop in
the test accuracy. These quantitative experiments indicate that
E2RNAS can search robust architecture with lower resource
consumption and comparable performance.

TABLE III
COMPARISON WITH STATE-OF-THE-ART NAS METHODS ON THE
CIFAR-100 DATASET. ‡ INDICATES THE USE OF THE PROVIDED

GENOTYPE IN THE ORIGINAL PAPER. WE SET L = 2.5 IN EQ. (5) FOR
E2RNAS-S1 AND L = 3.5 FOR E2RNAS-S2.

Architecture Test Acc. Params FLOPs PGD Acc. OoD AUPR
(%) ↑ (M) ↓ (M) ↓ (%) ↑ (%) ↑

DARTS‡ [1] 83.94 3.4 539 13.66 32.83
P-DARTS‡ [24] 83.54 3.5 543 17.34 32.43
PC-DARTS‡ [25] 83.06 3.7 568 18.44 32.75

E2RNAS-S1 79.39 2.3 375 22.26 32.88
E2RNAS-S2 81.70 3.9 643 21.21 33.30

D. The Generalization of E2RNAS

1) Combine with other gradient based NAS methods:
A notable benefit of E2RNAS is its generalization ability,
which means the proposed E2RNAS method can be seamlessly
combined with other NAS methods, especially DARTS-based
methods, to make a better trade-off among multiple objectives.
To reveal it, we combine E2RNAS with two variants of
DARTS, i.e. P-DARTS [24] and PC-DARTS [25], denoted

TABLE IV
EVALUATION OF THE GENERALIZATION ABILITY OF THE PROPOSED E2RNAS METHOD ON THE CIFAR-10 AND CIFAR-100 DATASETS. “{E2RNAS on

#METHOD}” MEANS THE ARCHITECTURE SEARCHED BY COMBINING “METHOD” WITH E2RNAS. ‡ INDICATES THE PROVIDED GENOTYPE IN THE
ORIGINAL PAPER. THE SEARCH COST IS RECORDED ON ONE SINGLE NVIDIA TESLA V100S GPU AND INCLUDES VALIDATION TIME WHILE SEARCHING.

Dataset Architecture Test Err. Params FLOPs PGD Acc. OoD AUPR
(%) ↓ (M) ↓ (M) ↓ (%) ↑ (%) ↑

CIFAR-10

P-DARTS‡ [24] 2.37 3.4 543 39.39 21.46
E2RNAS on P-DARTS 3.37 3.2 509 47.85 29.82

PC-DARTS‡ [25] 2.72 3.6 568 35.19 26.07
E2RNAS on PC-DARTS 3.78 2.7 443 42.38 38.93

CIFAR-100

P-DARTS‡ [24] 16.46 3.5 543 17.34 32.43
E2RNAS on P-DARTS 17.51 3.0 480 24.45 33.38

PC-DARTS‡ [25] 16.94 3.7 568 18.44 32.75
E2RNAS on PC-DARTS 17.13 3.1 492 24.37 34.64

by “E2RNAS on P-DARTS” and “E2RNAS on PC-DARTS”,
respectively.

Although these two methods improve the search process of
DARTS from different perspectives, their objective functions
are still similar to the original DARTS, i.e. problem (2).
Therefore, built on their method and following their experi-
mental settings, we can adapt the proposed E2RNAS method
to combine with them for further improvements, i.e. taking
resource constraint and robustness into consideration and then
reformulating their objective function as a multi-objective bi-
level optimization problem similar to the problem (7) to further
balance a trade-off among performance, resource constraint
and robustness.

We evaluate those generalized methods and compare them
with their corresponding original method on both the CIFAR-
10 and CIFAR-100 datasets. The corresponding experimental
results and comparison are presented in Table IV. The results
show that E2RNAS can make a better trade-off among mul-
tiple objectives, which is similar to the results on DARTS,
i.e. finding a more lightweight architecture with significantly
increased robustness and slightly decreased test accuracy.
Besides, we find that the search time only slightly increases
when combining E2RNAS with P-DARTS and PC-DARTS,
even by only 0.04 GPU days with P-DARTS on the CIFAR-
10 dataset, which indicates the efficiency of E2RNAS.

2) Transfer Architecture to ImageNet-1K: We further trans-
fer the architecture searched by E2RNAS on the CIFAR-10
dataset to the larger ImageNet-1K dataset. Table V shows that
the E2RNAS-S2 method performs better than DARTS in terms
of the test error and PGD accuracy. The trade-off between the
accuracy and robustness is consistent with previous experi-
ments. This experiment shows that the architecture searched by
E2RNAS on a smaller dataset is transferable to a larger dataset
while keeping the trade-off between different objectives.

E. Ablation Study and Discussion

This section studies how each design in E2RNAS influences
its performance on different objectives. We first discuss the
design of the LL subproblem of the problem (7) and then
investigate the effectiveness of MGDA in the UL subproblem.
The corresponding results are presented in Table VI.

TABLE V
TRANSFER SEARCHED ARCHITECTURE TO THE IMAGENET-1K DATASET.
‡ INDICATES THE USE OF THE PROVIDED GENOTYPE IN THE ORIGINAL

PAPER.

Architecture Test Err. Params FLOPs PGD Acc. OoD AUPR
(%) ↓ (M) ↓ (G) ↓ (%) ↑ (%) ↑

DARTS‡ 26.76 4.72 69.5 0.82 14.07
E2RNAS-S1 30.83 3.76 55.4 0.70 14.46
E2RNAS-S2 26.07 4.93 73.3 4.72 14.54

TABLE VI
ABLATION STUDY ON THE CIFAR-10 DATASET UNDER THE SAME

MINIMUM CONSTRAINTS L AND F IN EQ. (5) AND EQ. (6),
RESPECTIVELY. MGDA IS APPLIED TO MAKE A TRADE-OFF AMONG

MULTIPLE OBJECTIVES IN UL SUBPROBLEM AND IF WITHOUT MGDA (i.e.
“E2RNAS w/o MGDA”), IT MEANS EQUAL WEIGHTS OF THE FIVE
OBJECTIVES IN PROBLEM (7) ARE USED. “E2RNAS w/ AT in LL”

DENOTES USING ADVERSARIAL TRAINING IN LL SUBPROBLEM AND
“E2RNAS w/o OoD in LL” REPRESENTS THAT WE ONLY MINIMIZE

Ltr(θ,α) IN LL SUBPROBLEM.

Architecture Test Err. Params FLOPs PGD Acc. OoD AUPR
(%) ↓ (M) ↓ (M) ↓ (%) ↑ (%) ↑

E2RNAS 2.76 3.53 586 40.32 31.46
E2RNAS w/o MGDA 2.72 4.0 667 39.76 31.17
E2RNAS w/ AT in LL 3.34 3.0 476 52.40 32.53
E2RNAS w/o OoD in LL 3.26 2.7 439 39.22 31.37

1) Design of LL subproblem: E2RNAS aims to solve a
multi-objective bi-level problem (7), where the UL subproblem
optimizes the architecture α by evaluating multiple objectives
using the model θ learned in the LL subproblem. Hence, a
well-designed LL subproblem can improve the performance
of our proposed E2RNAS method.

It is well known that adversarial training can significantly
improve the adversarial robustness of the model but maybe
result in a bad clean performance. Moreover, we find that
the trade-off between performance and adversarial robustness
exists in the NAS domain. The corresponding results are
shown in Table VI. Comparing “E2RNAS w/ AT in LL” with
E2RNAS, despite the PGD accuracy significantly increasing,
the test accuracy also decreases, which fits the observation
in [7]. Therefore, we do not apply adversarial training in
the E2RNAS method to achieve comparable performance on
classification accuracy.

Different from adversarial robustness, we find that training
the model in the LL subproblem with OoD data samples (i.e.
E2RNAS vs. “E2RNAS w/o OoD in LL” in Table VI) can not
only improve the OoD metric but also make a better trade-off
among other objectives, especially test error vs. model size.
Hence, we add the OoD loss in the LL subproblem to achieve
better performance.

2) Effectiveness of MGDA: The MGDA method is applied
to solve the UL subproblem of the problem (7), which is a
multi-objective problem to minimize five objectives. If without
the MGDA method, it means that we solve the UL subproblem
by minimizing an equally weighted sum of five objectives (i.e.
Γ = (0.2, · · · , 0.2) in Eq. (10)). We quantitatively compare
the performance of E2RNAS with and without MGDA (i.e.
“E2RNAS” vs. “E2RNAS w/o MGDA” in Table VI) and find
that solving with MGDA achieves much better results on the
parameter size, FLOPs, OoD metric (i.e. AUPR) and PGD
accuracy. So instead of using equal weights, applying MGDA
can find a good solution of weights and make a trade-off
among multiple objectives.

V. CONCLUSION

This paper proposes the E2RNAS method that optimizes
multiple objectives simultaneously to search an effective, effi-
cient, and robust architecture. The proposed objective function
is formulated as a multi-objective bi-level problem, and we
design an algorithm to integrate the MGDA with the bi-level
optimization. Experiments demonstrate that E2RNAS can find
robust architecture with optimized model size and comparable
classification accuracy on various datasets. In our future study,
we are interested in extending the proposed E2RNAS method
to search for multiple Pareto-optimal architecture at one time.

Acknowledgements. This work is supported by NSFC key
grant 62136005 and NSFC general grant 62076118.

REFERENCES

[1] H. Liu, K. Simonyan, and Y. Yang, “DARTS: differentiable architecture
search,” in Proceedings of the 7th International Conference on Learning
Representations, 2019.

[2] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective neural
architecture search via lamarckian evolution,” in Proceedings of the 7th
International Conference on Learning Representations, 2019.

[3] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “MnasNet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 2820–2828.

[4] H. Benmeziane, K. E. Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba,
and N. Wang, “A comprehensive survey on hardware-aware neural
architecture search,” arXiv preprint arXiv:2101.09336, 2021.

[5] X. Jin, J. Wang, J. Slocum, M.-H. Yang, S. Dai, S. Yan, and J. Feng, “Rc-
darts: Resource constrained differentiable architecture search,” arXiv
preprint arXiv:1912.12814, 2019.

[6] R. Ardywibowo, S. Boluki, X. Gong, Z. Wang, and X. Qian, “NADS:
neural architecture distribution search for uncertainty awareness,” in
Proceedings of the 37th International Conference on Machine Learning,
vol. 119, 2020, pp. 356–366.

[7] C. Devaguptapu, D. Agarwal, G. Mittal, P. Gopalani, and V. N. Bala-
subramanian, “On adversarial robustness: A neural architecture search
perspective,” in Proceedings of the IEEE International Conference on
Computer Vision Workshops, 2021, pp. 152–161.

[8] J.-A. Désidéri, “Multiple-gradient descent algorithm (MGDA) for multi-
objective optimization,” Comptes Rendus Mathematique, vol. 350, no. 5,
pp. 313–318, 2012.

[9] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Traces and
Emergence of Nonlinear Programming. Springer, 2014, pp. 247–258.

[10] K. Bi, L. Xie, X. Chen, L. Wei, and Q. Tian, “Gold-nas: Gradual, one-
level, differentiable,” arXiv preprint arXiv:2007.03331, 2020.

[11] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” in Proceedings of the 7th Interna-
tional Conference on Learning Representations, 2019.

[12] M. Guo, Y. Yang, R. Xu, Z. Liu, and D. Lin, “When NAS meets
robustness: In search of robust architectures against adversarial attacks,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2020, pp. 628–637.

[13] J. Liu and Y. Jin, “Multi-objective search of robust neural architectures
against multiple types of adversarial attacks,” Neurocomputing, vol. 453,
pp. 73–84, 2021.

[14] K. Lee, H. Lee, K. Lee, and J. Shin, “Training confidence-calibrated
classifiers for detecting out-of-distribution samples,” in Proceedings of
the 6th International Conference on Learning Representations, 2018.

[15] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” in Proceedings of the 5th International Conference
on Learning Representations, 2017.

[16] F. Ye, B. Lin, Z. Yue, P. Guo, Q. Xiao, and Y. Zhang, “Multi-objective
meta learning,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[17] M. Frank and P. Wolfe, “An algorithm for quadratic programming,”
Naval research logistics quarterly, vol. 3, no. 1-2, pp. 95–110, 1956.

[18] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in Neural Informa-
tion Processing Systems, vol. 25, pp. 1097–1105, 2012.

[20] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
2011.

[21] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting
adversarial training,” in Proceedings of the 8th International Conference
on Learning Representations, 2020.

[22] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in Proceedings of
the 6th International Conference on Learning Representations, 2018.

[23] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified
and out-of-distribution examples in neural networks,” in Proceedings of
the 5th International Conference on Learning Representations, 2017.

[24] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive differentiable architec-
ture search: Bridging the depth gap between search and evaluation,” in
Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 1294–1303.

[25] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, and H. Xiong,
“Pc-darts: Partial channel connections for memory-efficient architecture
search,” in Proceedings of the 7th International Conference on Learning
Representations, 2019.

[26] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.

[27] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 4780–4789.

[28] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in Proceedings of the European Conference on Computer Vision,
2018, pp. 19–34.

[29] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in Proceedings of the
International Conference on Machine Learning, 2018, pp. 4095–4104.

[30] S. Green, C. M. Vineyard, R. Helinski, and Ç. K. Koç, “RAPDARTS:
resource-aware progressive differentiable architecture search,” in Pro-
ceedings of the International Joint Conference on Neural Networks,
2020, pp. 1–7.

[31] J. Cui, P. Chen, R. Li, S. Liu, X. Shen, and J. Jia, “Fast and practical
neural architecture search,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 6509–6518.

