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Abstract

Meta learning with multiple objectives has been attracted much attention recently
since many applications need to consider multiple factors when designing learning
models. Existing gradient-based works on meta learning with multiple objectives
mainly combine multiple objectives into a single objective in a weighted sum man-
ner. This simple strategy usually works but it requires to tune the weights associated
with all the objectives, which could be time consuming. Different from those works,
in this paper, we propose a gradient-based Multi-Objective Meta Learning (MOML)
framework without manually tuning weights. Specifically, MOML formulates the
objective function of meta learning with multiple objectives as a Multi-Objective
Bi-Level optimization Problem (MOBLP) where the upper-level subproblem is
to solve several possibly conflicting objectives for the meta learner. To solve the
MOBLP, we devise the first gradient-based optimization algorithm by alterna-
tively solving the lower-level and upper-level subproblems via the gradient descent
method and the gradient-based multi-objective optimization method, respectively.
Theoretically, we prove the convergence properties of the proposed gradient-based
optimization algorithm. Empirically, we show the effectiveness of the proposed
MOML framework in several meta learning problems, including few-shot learning,
domain adaptation, multi-task learning, and neural architecture search. The source
code of MOML is available at https://github.com/Baijiong-Lin/MOML.

1 Introduction

In the past few years, deep learning has achieved great success in various fields [43] because it can
effectively and efficiently process massive and high-dimensional data. However, training a deep
learning model from scratch often requires a large amount of labeled data to learn a large number of
model parameters and needs to choose hyperparameters by hand.

As a way to address those problems by enabling models to learn how to learn, meta learning has
attracted considerable attention recently [19, 20]. Meta learning gains knowledge from multiple meta
training tasks so that the knowledge can be reused in new tasks or new environments rapidly with
a few training examples. Taken broadly, objective functions of meta learning models are usually
formulated as a bi-level optimization problem where the lower-level subproblem represents the
adaptation to a given task with learned meta parameters and the upper-level subproblem tries to
optimize these meta parameters via a meta objective [19]. Hence, from this view, meta learning has a
wide range of applications such as hyperparameter optimization [13], Neural Architecture Search
(NAS) [29], and Reinforcement Learning (RL) [68].
∗Equal contribution.
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In many studies on conventional meta learning methods and applications, there is only a single
meta objective in the upper-level subproblem. For example, the Model-Agnostic Meta-Learning
(MAML) method [12] only measures the performance on a validation dataset in the upper-level
subproblem to evaluate the learned initialization of parameters. DARTS [29], a differentiable method
for NAS, evaluates the performance of the searched architecture on the validation dataset. However,
in real-world applications, there are usually more than one objective to be considered. For example,
for MAML, we may need to consider not only the performance but also the robustness which can
help adapt to new tasks with the learned initialization. Similarly, the network size and performance
should be balanced in NAS, especially when the searched architecture will be deployed to devices
with limited resources such as mobile phones. In those applications, we can see that there is a need to
balance multiple possibly conflicting objectives in meta learning.

Meta learning with multiple objectives thus has drawn much attention in recent studies. Specifically,
some works study specific meta learning problems in the multi-objective case, such as multi-objective
NAS [66, 57, 1, 34], multi-objective RL [4], and so on. However, those works either linearly combine
multiple objectives into a single objective for the upper-level subproblem [65, 63, 11] or utilize
multi-objective bi-level evolutionary algorithms [5, 54, 47] to handle it. The former approach needs
to tune weights associated with all the objectives, which is time consuming, and its performance
depends on the set of candidate weights in, for example, the cross validation method. The latter
approach, whose computational complexity is even higher, has no convergence guarantee in the
optimization process and is not easy to be integrated into gradient-based learning models such as
deep neural networks, which limits its use in many learning models.

To alleviate those limitations in existing works, in this paper we propose a unified gradient-based
Multi-Objective Meta Learning (MOML) framework with a convergence guarantee. The MOML
framework formulates objective functions in meta learning with multiple objectives as a Multi-
Objective Bi-Level optimization Problem (MOBLP), where the lower-level subproblem is to learn
the adaptation to a task similar to vanilla meta learning and the upper-level subproblem minimizes a
vector-valued function corresponding to multiple objectives for the meta learner. To solve MOBLP,
we devise the first gradient-based optimization algorithm by alternatively solving the lower-level
and upper-level subproblems via a gradient descent method and a gradient-based multi-objective
optimization method such as [7], respectively. We theoretically prove the convergence properties
of the proposed gradient-based optimization method. To show the effectiveness of the MOML
framework, we apply it to several meta learning problems, including few-shot learning, domain
adaptation, multi-task learning, and NAS, where multi-task learning is firstly formulated from the
perspective of meta learning. In summary, the main contributions of this paper are four-fold.

• We propose a unified MOML framework based on the MOBLP and devise a gradient-based
optimization algorithm for the MOML framework.

• We prove the convergence property of the proposed optimization algorithm.

• We formulate several learning problems as instances of the MOML framework.

• Experiments show that MOML achieves state-of-the-art performance on those learning
problems.

2 Related Work

Meta Learning. Meta learning (a.k.a. learning to learn) learns knowledge from multiple tasks
and then adapts it to new tasks with a few samples quickly. Many studies in meta learning mainly
focus on solving the few-shot learning problem. From this view, meta learning can be divided into
three main categories, including metric-based approach [55, 56], model-based approach [28], and
optimization-based approach [12, 39]. For example, as an optimization-based method, MAML learns
an initialization of model parameters so that a new task can be learned with a few training samples
by fine-tuning the learned initialization. A widely-used formulation in meta learning can be cast as
a bi-level optimization problem, where the upper-level subproblem is to learn meta parameters by
minimizing a meta objective and the lower-level subproblem is to quickly adapt to new tasks with
meta parameters [45, 19]. For example, MAML adapts to a new task by using the associated training
dataset and the learned initialization in the lower level, and then updates the initialization according
to the validation performance in the upper level. From this perspective, meta learning is a general
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learning paradigm and has more general applications [19]. In this paper, we study meta learning from
the perspective of the bi-level optimization.

Multi-Objective Optimization. Multi-objective optimization is to address the problem of simulta-
neously minimizing multiple objectives, which may conflict with each other. The simplest way to
handle multi-objective optimization is to convert to a single-objective optimization problem via the
linear scalarization approach which minimizes the weighted sum of all the objectives. Actually, many
machine learning algorithms adopt this approach. For example, minimizing the regularization term to
control the model complexity and minimizing the training loss are two conflicting objectives, and a
learning model is usually to minimize a linear combination of those two terms. Recently, many kinds
of advanced multi-objective optimization algorithms are proposed, such as evolutionary algorithms
[73], population-based algorithms [15], gradient-based algorithms [7, 37], and so on. Some of them
have been successfully applied to solve machine learning problems [22]. In this work, we focus on
gradient-based algorithms because this approach can be easily integrated into gradient-based machine
learning models such as deep learning models.

3 The MOML Framework

In this paper, the proposed MOML framework has a unified objective function, which is formulated
as a Multi-Objective Bi-Level optimization Problem (MOBLP), as

min
α∈A,ω∈Rp

F (ω, α) = (F1(ω, α), F2(ω, α), ..., Fm(ω, α))T s.t. ω ∈ S(α), (1)

where function F : Rp × Rn → Rm is a vector-valued jointly continuous function for the m desired
meta objectives and A is a nonempty compact subset of Rn. In problem (1), S(α) is defined as the
set of optimal solutions to minimize f(ω, α) w.r.t. ω, i.e.,

S(α) = arg min
ω
f(ω, α). (2)

When m equals 1, problem (1) reduces to a standard Bi-Level optimization Problem (BLP), which
is a widely-used formulation in meta learning [19], and hence from this perspective, the MOML
framework is a generalization of meta learning. In problems (1) and (2), F is called the Upper-Level
(UL) subproblem and f : Rp × Rn → R is the Lower-Level (LL) subproblem. The LL subproblem
can be considered as a constraint to the UL subproblem. In MOML, F contains multiple meta
objectives to be achieved for the meta learner and f defines the objective function for current task
such as the training loss. In Section 5, we will see the application of MOML in different learning
problems, including few-shot learning, domain adaptation, multi-task learning, and neural architecture
search.

To solve problem (1), there exist a type of works [5, 54, 47] which adopt multi-objective evolutionary
algorithms. However, such methods have a high complexity without convergence guarantee and are
not easy to be integrated with gradient-based models such as deep neural networks. Hence, we do not
include them in experiments. To the best of our knowledge, there is no gradient-based optimization
algorithm with convergence guarantee to solve an MOBLP, which is what we will do in the next
section.

4 Optimization

In this section, we devise a general algorithm to solve the MOBLP (i.e., problem (1)) and provide
convergence analyses under certain assumptions.

4.1 Lower-Level Singleton Condition

Due to the complicated dependency between UL and LL variables, solving the MOBLP is challenging,
especially when optimal solutions of the LL subproblem are not unique.

For a BLP with a single objective in the UL subproblem, many studies [8, 13, 52] potentially require
that the LL subproblem only admits a unique minimizer for every α ∈ A. This condition can
simplify both the optimization process and convergence analyses and is first fomally introduced as
Lower-Level Singleton (LLS) condition in [30].
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For the MOBLP, the LLS condition is necessary. If the LLS condition does not hold, the MOBLP is
even ill-defined [9]. To see this, suppose for a fixed α0, we get a set of solutions S(α0) for the LL
subproblem. Since F is vector-valued in problem (1), it is unclear that at which ω ∈ S(α0) the UL
subproblem F should be evaluated. With the LLS condition, problem (1) can be simplified as

min
α∈A

ϕ(α) = F (ω∗(α), α) s.t. ω∗(α) = arg min
ω
f(ω, α). (3)

4.2 Gradient-based Optimization Algorithm

Here we design a gradient-based optimization algorithm to solve problem (3). Usually, there is no
closed form for the solution ω∗(α) of the LL subproblem and so it is difficult to optimize the UL
subproblem directly. Another approach is to use the optimality condition of the LL subproblem (i.e.,
∇ωf(ω, α) = 0) as equality constraints for the UL subproblem in a way similar to [41]. However,
this approach only works for LL subproblems with simple forms and cannot work for general learning
models.

To solve problem (3), we take a strategy similar to the alternating optimization. In the first part of
each iteration (corresponding to steps 3-6 in Algorithm 1), we solve the LL subproblem via gradient
descent methods. Specifically, with an initialization ω0 for the LL variable where the index t of the
iteration is omitted for notation simplicity, the solution of the LL subproblem can be updated for K
steps as ωk+1(α) = Tk(ωk(α), α), k = 1, . . . ,K − 1, where Tk represents an operator to update ω.
Here we consider a first-order gradient descent method for Tk such as the Stochastic Gradient Descent
(SGD) method and Tk can be formulated explicitly as Tk(ωk(α), α) = ωk(α)− µ∇ωf(ωk(α), α),
where µ > 0 denotes the step size and ∇ωf(ωk(α), α) denotes the derivative of f w.r.t. ω at
ω = ωk(α). In the second part of each iteration (corresponding to steps 7-9 in Algorithm 1), by fixing
the value of ω as the current solution ωK(α) obtained in the first part, we solve the UL subproblem
as

min
α
ϕK(α) = F (ωK(α), α). (4)

Algorithm 1 Optimization Algorithm for MOML
Input: numbers of iterations (T , K), step size (µ, ν)
1: Randomly initialized α0;
2: for t = 1 to T do
3: Initialize ωt0(αt);
4: for j = 1 to K do
5: ωtj(αt)← ωtj−1(αt)− µ∇ωf(ωtj−1(αt), αt);
6: end for
7: Compute gradients∇αFi(ωtK(αt), αt) for all the i’s;
8: Compute the gradient

d(ωtK(αt), αt) = MOPSolver({∇αFi(ωtK(αt), αt)});
9: αt+1 = αt − νd(ωtK(αt), αt) with a step size ν;

10: end for

Problem (4) is an unconstrained
Multi-Objective optimization Problem
(MOP) and we can use any multi-
objective optimization algorithms to
solve it. Here we choose gradient-
based multi-objective optimization
methods as they can be seamlessly inte-
grated into any gradient-based learning
framework. There are several gradient-
based multi-objective optimization al-
gorithms [44, 7, 58] and they com-
monly find an appropriate descent di-
rection d for all the objectives in F by
aggregating their gradients w.r.t. α. So
such process is denoted by d = MOPSolver({∇αFi(ωK(α), α)}mi=1) in Algorithm 1. In this paper,
we adopt a simple gradient-based MOP method called Multiple Gradient Descent Algorithm (MGDA)
[7], whose details are introduced in Appendix A.2 due to page limit.

The entire algorithm to solve problem (3) is shown in Algorithm 1, which to the best of our knowledge
is the first gradient-based optimization algorithm for MOBLPs. In Algorithm 1, we obtain only one
solution for MOBLPs, which is different from multi-objective evolutionary algorithms that can find a
population of solutions. How to obtain multiple nearly optimal solutions for MOBLPs is beyond the
scope of this paper and we will study it in our future work.

4.3 Convergence Analysis

Algorithm 1 is simple and intuitive, but its convergence properties are unknown, which is what we
aim to study in this section. As an MOBLP, problem (3) cannot reduce to SOML with a scalar-valued
objective function in the upper-level subproblem when using gradient-based Algorithm 1 to solve it.
Therefore, it has different theoretical properties from SOML as we need to focus on the convergence
properties of a minimal point set instead of a minimum scalar in the UL subproblem.
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We first recall some notions about vector-valued functions. Consider a vector-valued function
g(z) : Rn → Rm (m,n ∈ N,m ≥ 2). We denote by Min g(z) the set of all the minimal points of
function g(z). Min g(z) is also called the Pareto frontier or Pareto-optimal set. The corresponding
efficient solution or Pareto-optimal solution set of g(z) is denoted by Eff(g(z)). The convexity of
vector-valued functions is called the P-convex. The details of these definitions can be found in
Appendix A.

To help analyze convergence properties of Algorithm 1, with a basic assumption about the LLS
condition which is mentioned in Section 4.1 and is widely adopted in BLPs [52, 10], we can obtain
the following result.
Theorem 1. If f(ω, α) is jointly continuous, arg minω f(ω, α) is a singleton for every α ∈ A, and
ω∗(α) is uniformly bounded on A, then the function F (ω∗(α), α) is continuous w.r.t. α.

BecauseA is a compact set, Theorem 1 implies the existence of solutions. Theorem 1 and the uniform
convergence of ωK(α) can further imply the convergence for the solution of the LL subproblem,
which is similar to that of the standard BLP problem [13].

For the convergence of Algorithm 1, we need to analyze minimal point sets of the images of perturbed
functions ϕK(α) and ϕ(α) which are defined in problems (4) and (3), respectively. We consider the
most natural set convergence under this setting, i.e., the Kuratowski-Painlevé set-convergence. Due
to page limit, please refer to these definitions in Appendix A. Under certain assumptions which are
used in analyses of BLP and MOP [13, 35], we have the following convergence results.
Theorem 2. In addition to Theorem 1, it is assumed that (i) F (·, α) is uniformly Lipschitz continuous;
(ii) The iterative sequence {ωk(α)}Kk=1 converges uniformly to ω∗(α) on A as K → +∞; (iii)
A is a convex set; (iv) ϕK is P-convex and ϕ is strictly P-convex. Then, the Kuratowski-Painlevé
set-convergence of both the minimal point set and efficient solution set in Algorithm 1 holds, i.e.,

Min ϕK(α)→ Min ϕ(α), Eff ϕK(α)→ Eff ϕ(α).

Thus, under some specific assumptions, Theorem 2 provides a theoretical justification for the conver-
gence of Algorithm 1 to solve MOBLPs.

5 Applications of MOML

In this section, we introduce several use cases of the MOML framework in several learning problems,
including few-shot learning, semi-supervised domain adaptation, multi-task learning, and neural
architecture search.

5.1 Few-Shot Learning

Few-Shot Learning (FSL) aims to tackle the problem of training a model with only a few training
samples [64]. Recently, FSL is widely studied from the perspective of meta learning by using
prior knowledge in the meta training process. Most studies in FSL only consider the classification
performance. However, in real-world applications, the performance is not the only important focus.
For example, we expect FSL models to not only have good performance but also be robust to
adversarial attacks [26], which may improve the generalization of FSL models. In the following, we
can see that this setting can naturally be modeled by the proposed MOML framework.

Problem Formulation. Suppose there is a base dataset Dbase with a category set Cbase and a novel
dataset Dnovel with a category set Cnovel, where Cbase ∩ Cnovel = ∅. The goal of FSL is to adapt
the knowledge learned from Dbase to help the learning of Dnovel. In the ith meta training episode,
we generate from Dbase an N -way k-shot classification task, which consists of a support set Ds(i)base

and a query set Dq(i)base. For the robustness, we add perturbations generated by the Projected Gradient
Descent (PGD) method [26] into each data point in Dq(i)base to generate a perturbed query set Dq(i),advbase .
The objective function of the FSL model that considers both the performance and the robustness can
be formulated as

min
α

(
LF (ω∗(i)(α), α,Dq(i)base),LF (ω∗(i)(α), α,Dq(i),advbase )

)
s.t. ω∗(i)(α) = arg min

ω
LF (ω, α,Ds(i)base), (5)

5



where ω represents model parameters, α denotes the meta parameters to encode common knowledge
that can be transferred to novel tasks, and LF (ω, α,D) denotes the average classification loss of a
model with model parameters α and meta parameters ω on a dataset D. In the UL subproblem of
problem (5), the first objective measures the classification loss on the query set based on ω∗(i)(α)
obtained by solving the LL subproblem and the second objective measures the robustness via the
classification performance on the perturbed query set. Problem (5) provides a general formulation,
which depends on what α represents, for FSL. We adapt problem (5) to three FSL methods (i.e.,
MAML [12], ProtoNet [55] and BOIL [40]) and the detailed formulations are put in Appendix C. It
is easy to see that problem (5) fits the MOML framework and we can use Algorithm 1 to solve it.

For an MOBLP such as problem (1), a common approach is to transform the UL subproblem into a
single objective problem via the linear scalarization approach [65, 63, 11]. In contrast with MOML,
this approach is named as Single-Objective Meta Learning (SOML) in this paper and used as an
extra baseline method in our experiments. Specifically, with fixed weights {γi}mi=1, which satisfy∑m
i=1 γi = 1 and γi ≥ 0, problem (1) is transformed to a standard bi-level optimization problem as

minα,ω∈S(α)
∑m
i=1 γiFi(ω, α). This approach heavily depends on the selection of weights {γi}mi=1

and inappropriate weights usually lead to poor performance.

Table 1: Classification accuracy (abbreviated as "Clean
Acc.") and PGD accuracy (abbreviated as "PGD Acc.")
on the mini-ImageNet dataset for 5-way k-shot FSL. The
best result in each group of methods is highlighted in
bold and the best result in each setting is annotated with
underline.

Method Clean Acc. PGD Acc. B-score

1-
sh

ot

MAML [12] 45.24±0.81 1.18±0.15 2.10±0.52
MAML+SOML 40.78±0.75 23.91±0.67 29.83±0.43
MAML+MOML (ours) 39.23±0.76 25.80±0.67 31.12±0.70

ProtoNet [55] 44.67±0.75 2.60±0.21 3.73±0.35
ProtoNet+SOML 38.65±0.72 23.10±0.65 28.67±0.67
ProtoNet+MOML (ours) 35.06±0.70 27.24±0.65 30.51±0.66

BOIL [40] 47.64±0.85 3.05±0.22 5.53±0.61
BOIL+SOML 40.44±0.79 25.94±0.69 31.29±0.75
BOIL+MOML (ours) 41.22±0.83 27.77±0.75 32.98±0.79

5-
sh

ot

MAML [12] 61.88±0.77 2.82±0.21 5.01±0.43
MAML+SOML 56.16±0.72 34.85±0.72 42.91±0.71
MAML+MOML (ours) 55.66±0.78 39.38±0.77 45.89±0.77

ProtoNet [55] 66.55±0.70 0.68±0.09 1.31±0.18
ProtoNet+SOML 59.11±0.71 39.41±0.73 46.93±0.71
ProtoNet+MOML (ours) 58.72±0.74 41.59±0.75 48.59±0.74

BOIL [40] 66.02±0.72 4.85±0.30 1.11±0.51
BOIL+SOML 58.54±0.76 34.28±0.75 42.94±0.78
BOIL+MOML (ours) 60.21±0.79 35.47±0.78 44.37±0.78

Experiments. Experiments are con-
ducted on two FSL benchmark datasets,
mini-ImageNet [61] and CUB-200-2011
(referred to as CUB) [62]. Due to page
limit, experimental settings and experi-
mental results on the CUB dataset are put
in Appendix C. The original baseline meth-
ods (i.e., MAML, ProtoNet, and BOIL)
are trained in a conventional way and we
evaluate the clean accuracy and PGD ac-
curacy of all the methods, where the clean
accuracy is measured on the original test
query set and the PGD accuracy is tested
on the query set perturbed by the PGD at-
tack. As the clean accuracy and the PGD
accuracy are reported to be conflicting to
each other [70], inspired by the widely-
used F1-score based on the precision and
recall, we propose a new metric called
Balance score (B-score), which is defined
as B-score = 2× (CA× PA)/(CA + PA)
with CA and PA denoting the clean accu-
racy and PGD accuracy, respectively, to
fully measure the performance in terms of the clean accuracy and PGD accuracy.

The average results over 600 testing tasks on the mini-ImageNet dataset are presented in Table 1.
From the results, we can see that the adversarial robustness of the original FSL methods (i.e., MAML,
ProtoNet, and BOIL) is poor, while SOML and the proposed MOML can significantly improve the
PGD accuracy. For example, MOML can improve the PGD accuracy of ProtoNet by about 40.91%
under the 5-shot setting. Since the classification accuracy and adversarial robustness are conflicting
[70], the clean accuracy of SOML and MOML slightly drops when compared with the orignal
FSL baselines. The B-score of MOML is higher than SOML, which indicates the multi-objective
formulation in the UL subproblem of MOML is better than the single-objective formulation in SOML.

5.2 Semi-Supervised Domain Adaptation

Semi-Supervised Domain Adaptation (SSDA) aims to address the domain shift between two domains
so that the model trained in a label-rich source domain can be adapted to a target domain with limited
labeled samples and abundant unlabeled samples [69]. A widely used approach for SSDA is to
align the distributions of two domains by finding some domain-invariant components. There are
usually three objectives to be considered, including two classification losses on two domains and an
alignment loss to measure the domain discrepancy. While existing works such as [49, 74] optimize
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all the objectives by simply computing a weighted sum of them, we formulate the SSDA problem as
an MOBLP under the MOML framework.

Problem Formulation. Given a source domain S and a target domain T , the source domain has a
large labeled dataset DS and the target domain has a limited labeled dataset DlT as well as a large
unlabeled dataset DuT , where DT = DlT

⋃
DuT denotes the entire dataset for the target domain.

The average classification losses in the source and target domains are represented by LD(ω,DS)
and LD(ω,DlT ), respectively, where ω is the model parameter. The alignment loss denoted by
LA(ω, α,DS ,DuT ) aims to learn domain-invariant components such as a domain-invariant projection
space by minimizing the local maximum mean discrepancy in DSAN [74] or domain-invariant
prototypes by maximizing the entropy in MME [49], where α is the initialization of ω. Then we can
formulate the SSDA problem under the MOML framework as

min
α

(LD(ω∗(α),DS),LD(ω∗(α),DlT ),LA(ω, α,DS ,DuT ))

s.t. ω∗(α) = arg min
ω
LA(ω, α,DS ,DuT ). (6)

In the LL subproblem of problem (6), we aim to learn a model to find a domain-invariant component
between two domains via the alignment loss LA by optimizing ω with an initialization α, and in
the UL subproblem, we expect to improve the model further by updating α via minimizing the
two classification losses together with the alignment loss. Here α acts similar to the parameter
initialization in MAML (i.e., α in problem (5)) and helps learn ω in the LL subproblem, but it
does not require any adaptation on the testing process. We can follow two state-of-the-art domain
adaptation models (i.e., DSAN and MME) to design the alignment loss and due to page limit, the
detailed formulation of the alignment loss LA is put in Appendix D.

Although a bi-level objective function is also formulated in Meta-MME [27], there exist two sig-
nificant differences between Meta-MME and the proposed MOML method. Firstly, Meta-MME
aims to learn the initialization of the network parameters by minimizing the source classification loss
and the alignment loss in its LL subproblem and then validate it on a few target labeled samples in
the UL subproblem, which is different from the proposed MOML formulation (i.e., problem (6)).
Secondly, the proposed MOML method considers a multi-objective optimization problem in the UL
subproblem, which is different from Meta-MME. Empirically, MOML outperforms the Meta-MME
method as shown in Table 2.

Table 2: Classification accuracy (%) on the Office-31 dataset with ResNet-50 as backbone for SSDA.
† means the corresponding method is appropriately modified to adapt to our experimental setting
according to the released code. ‡ indicates that the corresponding model is reimplemented by us. ↑, ↓,
and − in the subscript indicate an increase, a decrease, and no change, respectively, when compared
with the original method in two groups of models based on DSAN or MME. The best results in each
group of models (i.e., DSAN and MME) are highlighted in bold and the best results of each transfer
task are annotated with underlines.

Method A→D D→A A→W W→A D→W W→D Avg

S+T 93.58 74.16 92.17 74.08 98.01 100 88.67
DANN† [14] 93.09 74.52 91.60 75.07 98.58 100 88.81
ENT† [16] 93.33 74.16 94.44 75.03 97.86 100 89.13
APE† [23] 94.81 76.10 91.80 76.02 97.29 99.75 89.29
ADR† [50] 93.33 76.73 93.30 76.51 97.86 100 89.62
CDAN† [32] 94.32 75.25 92.88 76.98 98.43 100 89.64

DSAN† [74] 93.83 76.82 93.59 75.68 98.43 100 89.73
DSAN+SOML 94.32↑ 76.91↑ 94.16↑ 75.99↑ 97.72↓ 100− 89.85↑
DSAN+MOML (ours) 94.08↑ 77.13↑ 94.59↑ 75.96↑ 98.36↓ 100− 90.02↑

MME† [49] 92.09 77.71 93.73 77.27 98.01 100 89.80
Meta-MME‡ [27] 92.10 77.01 94.30 76.87 98.29 100 89.76
MME+SOML 92.09− 77.57↓ 94.30↑ 77.20↓ 98.29↑ 100− 89.90↑
MME+MOML (ours) 94.32↑ 78.30↑ 94.44↑ 77.71↑ 98.43↑ 100− 90.53↑

Experiments. Experiments are conducted on the Office-31 dataset [48], which has 3 domains:
Amazon (A), Webcam (W) and DSLR (D). By following [59, 33], we construct all six transfer
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tasks. Each class in the target domain has three labeled images in the training process by following
[49]. Baseline models in comparison include a deep neural network (denoted by ‘S+T’) that is
trained on DS

⋃
DlT and other eight state-of-the-arts domain adaptation methods: ENT [16], DANN

[14], ADR [50], CDAN [32], MME [49], Meta-MME [27], APE [23] and DSAN [74]. As DSAN
and MME are two state-of-the-art domain adaptation models, to improve their performance further,
SOML and MOML adopt the alignment loss in DSAN and MME, respectively, leading to two groups
of models, i.e., (DSAN, DSAN+SOML, DSAN+MOML) and (MME, Meta-MME, MME+SOML,
MME+MOML). All the methods except S+T are trained on DS

⋃
DT . Due to page limit, details of

baselines and experimental settings are put in Appendix D.

Experimental results on the Office-31 dataset are shown in Table 2. The incorporation of SOML
into DSAN and MME can consistently improve the performance of two baseline models and the
proposed MOML method further improves the classification accuracy. For example, MME+MOML
significantly improves the performance of the first five tasks and achieves the perfect performance
(i.e., the 100% accuracy) on the last task as most baselines did. Moreover, compared with state-of-
the-art baselines, DSAN+MOML achieves the best result (i.e., 94.59%) on transfer task A→W and
MME+MOML has the best accuracy (i.e., 78.30% and 77.71%) on transfer tasks D→A and W→A.
Besides, MME+MOML achieves the best average classification accuracy of 90.53% and significantly
outperforms all of the baselines, which indicates the effectiveness of the proposed MOML method.

5.3 Multi-Task Learning

Multi-Task Learning (MTL) [2, 72] aims to improve the performance of multiple tasks simultaneously
by leveraging useful information contained in these tasks. Learning the loss weighting is a challenge
in MTL and there are some works [51, 31, 71] to solve this problem. Among those works, Sener
and Koltun [51] formulate multi-task learning problems from the perspective of multi-objective
optimization and implicitly learn the task weights via MGDA, Liu et al. [31] estimate the task weight
of each task as the ratio of the training losses in the last two iterations for the corresponding task, and
Yu et al. [71] project each task’s gradient onto the normal plane of the other. Different from those
works which are all based on single-level optimization problems on the entire training set, for the
first time we formulate this problem as an MOBLP based on the split of the entire training dataset
and solve this problem based on the MOML framework.

Problem Formulation. Suppose there are m tasks. The ith task has a dataset Di for model training.
Here each Di is partitioned into two subsets: the training dataset Dtri and the validation dataset
Dvali , where Dtri is used to train a multi-task model and Dvali is to measure the performance of the
multi-task model on the ith task. f(·;ω), the learning function of the multi-task model parameterized
by ω, receives data points from the m tasks and outputs predictions. Let αi ∈ [0, 1] denotes the loss
weight for the ith task. The goal is to jointly learn the loss weights α = (α1, . . . , αm)T and the
model parameter ω. The objective function of the proposed method under the MOML framework is
formulated as

min
α

(
LMTL(ω∗(α),Dval1 ), . . . ,LMTL(ω∗(α),Dvalm )

)
s.t. ω∗(α) = arg min

ω

m∑
i=1

αiLMTL(ω,Dtri ), 0 ≤ αi ≤ 1 ∀i,
m∑
i

αi = 1, (7)

where LMTL(ω,D) = 1
|D|
∑

(x,y)∈D `(f(x;ω), y) denotes the average loss of f(·;ω) on a dataset
D with |D| denoting the size of D and `(·, ·) denoting a loss function. In the LL subproblem of
problem (7), when given weights in α, we aim to learn a MTL model to get optimal parameters ω∗
on the training dataset and in the UL subproblem, we expect to update α via minimizing the loss of
the trained MTL model with parameters ω∗ on the validation dataset of each task.

Experiments. Experiments are conducted on the NYUv2 [53], Office-31 and Office-Home [60]
datasets. Baseline methods in the comparison include different loss weighting strategies such as
Equal Weights (EW), Dynamic Weight Average (DWA) [31] with the temperature parameter T as 2,
MGDA [51], PCGrad [71] and SOML, and they are built on two multi-task architectures, including
Deep Multi-Task Learning (DMTL) that adopts the hard-sharing structure to share the first several
layers and Multi-Task Attention Network (MTAN) [31]. The ResNet-50 is used as the backbone
and we do not use data augmentation. Due to page limit, the introduction of datasets, details on
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experimental settings, and experimental results on the Office-31 and Office-Home datasets are put in
Appendix E.

Table 3: Performance on the NYUv2 dataset with three tasks: 13-class semantic segmentation, depth
estimation, and surface normal prediction. The best combinations of the architecture and weighting
strategy are highlighted in bold. The best results for each task on each measure are annotated with
underlines. ↑ (↓) means the higher (lower) the result, the better the performance.

Architecture
Weighting

Segmentation Depth Surface Normal

Strategy mIoU↑ Pix Acc ↑ Abs Err ↓ Rel Err↓
Angle Distance Within t◦

Mean ↓ Median ↓ 11.25 ↑ 22.5 ↑ 30 ↑

DMTL

EW 52.71 74.78 0.3886 0.1581 23.8568 17.3537 34.57 60.45 71.63
DWA [31] 52.72 75.11 0.3931 0.1631 23.7894 17.3320 34.57 60.51 71.67

MGDA [51] 52.89 74.87 0.3963 0.1638 23.7513 17.2685 34.74 60.64 71.75
PCGrad [71] 53.22 75.45 0.3920 0.1658 23.2904 16.8728 35.47 61.58 72.56

SOML 53.20 75.22 0.3923 0.1628 23.6885 17.0228 35.42 61.03 71.97
MOML (ours) 54.98 75.98 0.3877 0.1618 23.2401 16.7388 35.90 61.81 72.76

MTAN [31]

EW 53.97 75.90 0.3794 0.1580 22.8743 16.5502 36.54 62.52 73.31
DWA [31] 54.12 75.79 0.3902 0.1595 22.9691 16.6212 36.23 62.41 73.28

MGDA [51] 54.38 75.55 0.3854 0.1583 22.9396 16.4670 36.70 62.58 73.23
PCGrad [71] 54.40 76.13 0.3830 0.1581 23.0040 16.4636 36.67 62.65 73.34

SOML 54.03 75.48 0.3829 0.1581 22.8279 16.4259 36.74 62.67 73.46
MOML (ours) 54.23 75.63 0.3843 0.1567 22.7530 16.2468 37.20 63.09 73.65

Experimental results on the NYUv2 dataset are shown in Table 3. Firstly, SOML outperforms the
EW, DWA, and MGDA strategies when using the DMTL architecture and achieves comparable
performance with the four baselines with the MTAN architecture. It indicates the proposed bi-level
formulation (i.e., problem (7) with weighted combined objectives in the UL subproblem used in
SOML) can achieve very good performance when compared with the state-of-the-art baselines.
Secondly, the MOML method outperforms the SOML method under both DMTL and MTAN
architectures, which means the multi-objective formulation in the UL subproblem is better than the
single-objective formulation. Finally, it is noticeable that the proposed MOML method achieves
state-of-the-art results in many metrics. For example, when training with the DMTL architecture,
MOML can achieve 54.98% in terms of the mIoU, which is significantly higher than other baselines
even with the advanced MTAN architecture. MOML with the MTAN architecture achieves the best
results on six metrics. Experimental results on the NYUv2, Office-31, and Office-Home datasets,
the latter two of which have their results in Appendix E, show that the proposed MOML framework
achieves state-of-the-art performance for learning loss weights in MTL.

The loss weights learned by the proposed MOML are (0.3120, 0.3804, 0.3076) and
(0.2541, 0.4860, 0.2599) for the three tasks (i.e., semantic segmentation, depth estimation, and
surface normal prediction) when using the DMTL and MTAN architectures, respectively. It is in-
teresting to find that when using different architectures, the weight of the depth estimation task is
commonly the highest, while the other two tasks have similar weights.

5.4 Neural Architecture Search

NAS aims to design the architecture of neural networks in an automated way. In architecture design,
we usually need to consider multiple factors. For example, we expect that the searched architecture
has good performance, behaves robustly to noises, and consumes low resources. In this case, we
formulate the NAS with multiple objectives as a case of MOML. Due to page limit, the introduction
of datasets, details on experimental settings, and experimental results are put in Appendix F.

Problem Formulation. By following the DARTS method [29], in an operation space denoted by O,
each element is an operation function o(·) and each cell is a directed acyclic graph with N nodes,
where each node represents a hidden representation and each edge (i, j) denotes a candidate operation
o(·) with a probability α(i,j)

o . Therefore, α = {α(i,j)
o }(i,j)∈E,o∈O is a representation of the neural

architecture, where E denotes the set of all the edges in all the cells. The entire dataset is split into a
training dataset denoted by Dtr and a validation dataset denoted by Dval.
The multi-objective NAS considers three objectives: the classification accuracy, adversar-
ial robustness and the number of parameters. We formulate three corresponding losses as
LN (ω,α,Dval),LN (ω,α,Dadvval ), and Lnop(α), where ω denotes all the model parameters in the
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neural network and Dadvval denotes the perturbed validation dataset by adding perturbations on each
data point. LN (ω,α,D) denotes the average classification loss on a dataset D of a neural network
with parameters ω and an architecture α,

LN (ω,α,D) =
1

n

∑
(x,y)∈D

`(ω,x, y),

where `(ω,x, y) denotes the loss function for each sample and n is the size of D.

To formulate Lnop(α), we denote by no the number of parameters associated with an operation
o and by Nnop(α) the number of parameters in a searched architecture α. Then Nnop(α) can
be computed by Nnop(α) =

∑
(i,j)∈E n

(i,j), where n(i,j) is the number of parameters of the
searched operation on the edge (i, j). As we determine the operation of each edge by selecting
the one with the largest probability, hence we have n(i,j) = n

argmaxo∈O α
(i,j)
o

. As the arg max

operation is non-differentiable, we use the softmax function to approximate Nnop(α) as N̂nop(α) =∑
(i,j)∈E

∑
o∈O

exp(α(i,j)
o )∑

o′∈O exp(α
(i,j)

o′ )
no. Therefore, to search a network architecture with an expected

size L, Lnop(α) can be formulated as

Lnop(α) = |N̂nop(α)− L|. (8)

Finally, the overall formulation for the multi-objective NAS is formulated as

min
α

(LN (ω∗(α),α,Dval),LN (ω∗(α),α,Dadvval ),Lnop(α))

s.t. ω∗(α) = arg min
ω
LN (ω,α,Dtr). (9)

In the LL subproblem of problem (9), when given the architecture α, we can train a model with
optimal parameters ω on the training dataset and in the UL subproblem, we expect to update the
architecture α by making a trade-off among the validation loss, the adversarial robustness and the
number of parameters. Obviously problem (9) matches the MOML framework. It is easy to see
that the DARTS method is a special case of problem (9) when its UL subproblem contains the first
objective only and hence problem (9) generalizes the DARTS method by considering two more
objectives.

Compared with the NSGANetV2 method [34] that utilizes a multi-objective bi-level evolutionary
algorithm, MOML is more efficient and has a convergence guarantee. Moreover, NSGANetV2
uses ensembled surrogate models to predict the accuracy of an architecture, which may incur a
performance gap between the UL and LL subproblems. The LL subproblem of NSGANetV2 only
chooses over 300 candidate architectures for evaluation with a supernet constructed for weight sharing,
which may lead to suboptimal solutions.

6 Conclusions

As a generalization of meta learning based on the bi-level formulation, a simple MOML framework
based on the multi-objective bi-level optimization is proposed in this paper. In the MOML framework,
the upper-level subproblem takes multiple objectives of a learning problem into consideration. To
solve the objective function of the MOML framework, a gradient-based optimization algorithm is
proposed and the convergence property of this algorithm is studied. Moreover, several use cases of
the MOML framework are investigated to demonstrate the effectiveness of the MOML framework.
In our future work, we will apply the MOML framework to more learning problems.
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